Controlling a Dot Matrix LED Display
with a Microcontroller

By Matt Stabile
University of California Santa Barbara
Media Arts and Technology

MAT 200C Winter 2008

Abstract

A tutorial on the basics of choosing and
setting up a microcontroller to control an
LED matrix is provided. Fundamentals of
LED matrices and microcontrollers are first
covered, followed by tips on making the
necessary interconnections between the
two. Relevant software for development is
surveyed and finally some example code is

provided for testing the LED matrix.

Introduction

This paper will provide a comprehensive
tutorial on how to drive and control a dot
matrix Light-Emitting Diode (LED) display
with a microcontroller. The display used is a
commercially available PCB mount 8 x 8 dot
matrix RGB LED display, with a total of 192
individual LEDs that are controlled by 32
control signals. The microcontroller used is

an Atmel ATMegal28; however, the control

and programming will be explained in
general terms as well to allow for
adaptation to any comparable

microcontroller or LED matrix.

Figure 1: 8x8 Dot Matrix LED Display

The Dot Matrix LED Display

An LED Matrix consists of an array of LED’ s
which are interconnected such that the
positive terminal (anode) of each LED in the
same column are connected together and
the negative terminal (cathode) of each LED
in the same row are connected together.
Note that this could be the other way
around as well, with the positive terminals
connected to the rows and the negative
terminals connected to the columns. Figure
2 shows a schematic for a typical 8 x 8

matrix with single color LEDs.

S
L]
=]
-
=]

D @ 4 8

ot o o oy oy o oy

o [o4 o4 [[bY o4

o1 o4 o4 (54 154 o4 [
o1 o4 o [o [y o
o1 B4 34 [[(b4 34

o1 b o o (b [o
o [(ot [(ol [[l

|

Figure 2: 8x8 LED Matrix Schematic

An LED dot matrix display (“dot” refers to
the circular lenses in front of the LEDs) can
also come with multiple LEDs of varying
colors behind each dot in the matrix. For
example, the matrix used in this project has
a Red, Green and Blue LED behind each dot
in the 8x8 grid. A configuration with
multiple LEDs behind each dot adds another
control pin to every column (positive
terminal) for each additional color of LED,
while the rows (negative terminals) are still
all connected together. Therefore an RGB
matrix has 32 control pins compared to the

16 pins seen in Figure 2.
Controlling the LED Matrix

Since all of the individual LED’s in a matrix

share their negative and positive terminals

in each row and column, it is not possible to
control each individual LED at the same
time. Instead, the matrix is controlled by
cycling through each row very quickly while
triggering the correct column pins to light
the desired LED’s for that particular row. If
the switching is done at a quick enough
rate, there will be no visible flicker and the
LED matrix display will appear to have each
LED turned on at the same time. This works
because of the principle known as
Persistence of Vision, which is the theory
that the retina of the human eye retains an
image for about a tenth of a second. Thus
an LED matrix must be very precisely
controlled, with the Rows being scanned
through sequentially at a rate greater than
about 40Hz (to be safe) while sending out
the column data at the exact same rate.
This kind of control is most easily
accomplished with the aid of a
microcontroller, plus some additional

components.

Choosing a microcontroller

When choosing a microcontroller that will
meet the requirements necessary for
controlling an LED matrix, the specifications

that must be met are those of the number

of 1/0 pins available, the amount of current
that each pin can source and sink and the
speed at which the microcontroller can
send out control signals. Another option
that one might desire is that of an onboard
Analog to Digital Converter for sampling an
input signal (such as an audio waveform)
which can then influence the control signals

being sent to the LEDs.

Modern day microcontroller
technology has made the issue of control
signal speed and available 1/0 pins almost
trivial for this application. Almost every chip
on the market now has upwards of 32 1/0
pins available and almost all operate at
speeds greater than 10MHz, which allows
for control signals to be sent at rates much
greater than the 40Hz that is required to
satisfy the Persistence of Vision principle.
For example, the microprocessor that |
chose ran at an operating speed of 16MHz
and in the loop of code that cycled through
the rows | was still able to put a 2ms delay
between each iteration, meaning that there
was a guaranteed 16ms of delay in my code
(excluding the actual code execution time)
and still no visible flicker on the matrix
display. Up until recent years, 1-8 decoder

chips (which allow the 8 rows pins to be

controlled by just 3 1/0 pins) were almost
always used to minimize the number of I/0
pins required on the microcontroller;
however, with the large amount of 1/0 pins
available on almost all micros now, these
chips seem like an unnecessary

complication to the design.

The final specification that must be
met is that of current consumption,
meaning that the amount of current that
each 1/0 pin can source and sink is greater
than the amount of current needed to
illuminate a row of LEDs. These numbers
must be determined from the specifications
sheet of the LED matrix in conjunction with
the microcontroller’s maximum current
values. This specification is also easily met
in most situations though, due to the way in
which we are switching the LEDs off and on
in such a rapid manner. When a typical
current specification is given on the LED
matrix data sheet (usually around 20mA per
LED), the spec is for steady-state
consumption (continuously “on”). Since the
LEDs are being switched on and off so
quickly, our current consumption is actually
much lower due to the current draw’s
continuously transient state. With the LED’s

fully switching, | observed there to be only

about a third of the current being drawn as
compared to the LEDs consumption at a
steady-state. To be safe, a Darlington
transistor array is almost always used in
between the cathodes of the LEDs and the
microcontroller 1/0O Pins. The Darlington
transistor array is an IC that is an array of 8

grounded NPN transistors which serve as
a current sink, enabling more current to
be drawn through the LEDs safely. The
array has a dual purpose in that it also
inverts the signal on the pins, so when we
send a positive control signal, it is actually
completing the Ground connection as is

needed to turn on the LEDs.

Bias resistors must also be
calculated and inserted in between each
1/0 pin on the microcontroller and the
anode pins on the LED matrix. Bias
resistors are calculated by referring to the
Electrical Characteristics table on the LED
matrix’s data sheet. Each differently
colored LED has a voltage that it prefers
to be biased at for correct operation,
somewhere usually between 2 — 5 Volts.
The voltage on the 1/0 pins of most
microcontrollers is a standard 5 Volts, so
using Ohms law with the desired voltage
and current specs will yield a correct bias

resistor value for each column of LEDs.

Putting it all together

With all of the specifications met, now
comes the fun part of wiring the whole
matrix up. This involves fabricating many
cables as the RGB matrix requires 32 control
signals, which first have to go from the
microcontroller to a board with the bias
resistors and Darlington transistor array,
and then from there to the 32 pins on the

back of the matrix.

[24

Microcontraller X Bias

Resistors

‘ ‘ ‘ ‘ ‘ | | | 8 Transistor
T T2 T3 T4 TS TE Tr Ta
Array

Figure 3: Block Diagram of Connections

The Atmel microcontroller used in this
project has its /O pins grouped in Ports
with 8 /0 pins each plus a Vcc pin and
Ground pin. Thus | chose to assign one port
for controlling the switching of the 8 row
pins, one port for the 8 Red Column pins,
one for the 8 Green pins and one for the 8
Blue pins. This separation of colors, rows,

and columns also makes the programming

more simple and intuitive. The most time
consuming part of wiring up the matrix is
mapping the pins from the microcontroller
ports to the PCB mount pins on the back of
the matrix. This turns out to be quite
complex because the 32 pins on the matrix
are in a seemingly completely random order
and must be correctly assigned to pins 0-7
on each port of the microcontroller. Table 1
provides the pin mappings with the matrix
pin numbers in bold and the corresponding
microcontroller port letter and number

directly below.

1 2 3 4 5 6 7 8

AO |FO |E1 |A2 |F2 |E3 |B7 |B6

9 10 |11 (12 |13 |14 |15 |16

BS B4 [A4 |E4 |F5 | A6 |E6 |F7

17 (18 (19 |20 |21 |22 |23 |24

E7 |A7 |F6 |E5 |A5 |F4 | B3 |B2

25 |26 |27 (28 (29 |30 |31 |32

Bl |BO |[F3 |A3 |E2 |F1 |Al |EO

Table 1: Matrix Pin Numbers in Bold, corresponding

microcontroller Port Letter and number directly below.

These can be used in conjunction with the
matrix data sheet information (links to this
found in the References section), which
shows the pin orientation on the actual
matrix and which pins correspond to which

LEDs in each row and column. After

correctly making all of the connections, we
are then ready to write a test program and

begin testing the board.

Programming the Microcontroller

The Atmel ATMEGA128 can be programmed
using BASIC, C, or Assembly language. After
the code is written, it is compiled using the
WinAVR compiler which outputs a Hex file
that can then be directly downloaded to the
microcontroller. The Hex file is downloaded
via an In-Circuit Programmer that connects
the microcontroller to the parallel port of a

PC.

It E)

hit

=
L]

Figure 4: In-Circuit program download tool

The Hex file must be downloaded through
use of special Serial Device Programming
software such as the freeware program
PonyProg2000. The Atmel evaluation board
| purchased from futurlec.com came with
extremely easy to follow tutorials and
example programs that showed step by

step how to compile and download the files

to the microcontroller. Any series of
microcontrollers no doubt comes with
extensive documents on setting up and
programming one for the first time, so | will

not into further detail of those processes.

There are a variety of IDEs available
for developing microcontroller programs
depending on the language that is desired
and the chip architecture being used. For
Atmel’s AVR family of chips, Atmel provides
a free Assembly Language IDE called AVR
Studio 4 which can be downloaded from

www.atmel.com. For programming in

BASIC, a demo version of BASCOM-AVR is
available from MCS Electronics at

www.mcselec.com. The demo version’s

only limitation is that of a 4kB maximum
source code file size. For programming in C
there is CodeVisionAVR, available in a demo
version with a 2kB file size limitation at

www.codevision.be. A good free C/C++ IDE

is called Code::Blocks and is available at

www.codeblocks.org. Code::Blocks already

has preconfigured settings for using the
WinAVR compiler, so it is a very good choice

for a free, fully functional IDE.

The first program used to test the

setup should be very simple and test every

LED in the array. Figure 5 shows an example
program that demonstrates how to turn on
every LED in the matrix, changing which
color LEDs are lit at even intervals. Note the
infinite while loop, since we just want the
microcontroller to run this routine for as
long as it is powered up. This section of
code would appear in the main() of your C
source file. The only other code that would
be necessary would be the #include
libraries for your specific microcontroller
and whatever lines of initialization may be
required depending on the application. The
code is extrememly simple, with the main
‘for’ loop simply iterating down the rows of
the matrix while simultaneously updating
the column data on the Ports of the
microcontroller. The delay in between each
row must be calibrated depending on the
speed of the microcontroller being used.
The target value is to use the longest delay
possible without being able to see any
flickering of the LEDs. The delay is desired
to ensure that the LEDs are getting enough
current each time to achieve full brightness.
The counter variable outside of the for loop
allows states to change according to the

length of the duration variable.

unsigned char ROW;

unsigned int Counter, Color, Duration;

Calor = 0;
Counter = 0;
Dmaration = L50;

while (1)
{
for (BOW = Ox30; ROW = 0Ox00;

{
PORTE = ROW;

if(Color == 01 {
PORTRZ = OxFF;
PORTE = 0Ox00;
PORTF = 0Ox00;

}

else if(Color == 1)
PORTA = 0Ox00;
PORTE = 0OxFF;
PORTF = 0Ox00;

}

else if(Color == Z){

PORTRE = 0Ox00;

PORTE = 0Ox00;

PORTF = 0OxFF;
}

delay msiZ);
b

Countertt;

ifiCounter > Duration){

Counter = 0O;
ifi(Color == 0)
Color = 1;
else if(Color == 1)
Calor = Z:
elge if(Color == E)
Color = 0O;

}
}

Figure 5: Example Control Program in C

Conclusion

BOW === 1)

As is apparent, there are many different

options when it comes to choosing a

microcontroller and LED matrix to work

with. It is easiest to choose an LED matrix

first and then to select a microcontroller

that meets the demands of the LEDs to be

controlled. Once the basic setup is

complete, the real challenge lies in

programming the LED matrix to display
interesting patterns. A good expansion is to
capture an input signal using an ADC and
then modify the display based on the input
signal information. With a digitized input
signal, the FFT could then be taken and DSP
algorithms could be used to map the data

to the LED matrix in interesting ways.

On-Line References

Arduino - www.arduino.cc

Open-source microcontroller project based
on Atmel AVR family of chips

Atmel - www.atmel.com

Manufacturer of the AVR series of
microcontrollers

Best Microcontroller Projects —

www.best-microcontroller-projects.com

Many example projects with PIC micros

Code::Blocks — www.codeblocks.org

Free C++ IDE with built in support for many
different compilers

Futurlec - www.futurlec.com

Sells microcontroller evaluation boards and
starter kits, as well as LED matrices

Microchip - www.microchip.com

Manufacturer of PIC family of
microprocessors

Parallax - www.parallax.com

Sells microcontroller starter and advanced
kits

SparkFun Electronics — www.sparkfun.com

Sells microcontrollers and LED matrices

The LED Light - www.theledlight.com

Sells all types of LEDs, has good beginner
tutorials on setting up LEDs.

RGB LED Dot Matrix Display

www.foryard.com

FYM-23881ABxxx Manufactured by Foryard
Optoelectronics

Data Sheet

http://www.sparkfun.com/datasheets/Com
ponents/FYM-23881ABxxx.pdf

