An Introduction to

OpenCL

Ben Alun-Jones

Overview

GPU Computing :What is it?
What is OpenCL!?

Why OpenCL!?

Architecture

Example Code

Application

Using the graphics card with
the CPU for general purpose
computing

Take advantage of the inherent
parallelism of many
computationally intensive
operations

Limited by need to transform
problems into the graphics
‘paradigm’

Limited to certain operations

EEEEEEEE EEEEEEEn
mr 11110111,

240 cores::
4 cores

Accelerating Time to Discovery

4.6 Days

27 Minutes 30 Mites 16 Minutes

- e o Kinde -

Computational Neurological Cell Phone RF 3DCT
Chemistry Modeling Simulation Ultrasound

M CPUOny M With GPU

Tuesday, 11 May 2010

® Framework based on
open standards for
parallel and distributed
computing

® Based on ANSI C

® Must be supported by

hardware

- e.g. Builds on top of
NVIDIA’s CUDA
architecture

Tuesday, 11 May 2010

-

Why OpenCL!

® Allows you to write one piece
of code that can then run over
multiple machines/
architectures/operating systems

High Performance Computing Solutions

® BUT probably not optimal for
all (or any) of the compute
engines

® Allows for a broader range of

CPU and GPU devices n§°m NVIDIA Tesla GPU Computing Solutions for HPC
Infinite Possibilities

Tuesday, 11 May 2010

-

OpenCL Architecture

Compute Device
Compute unit 7 Compute unit Af
Private Private Private Private
memory 1 memory W memory 1 memory W
l aanm l |aEan l - En l
PE 1 PE M PE 1 | PEM
1 A i A
Local | Local
memory 1 memory N
4) 4
Global/Constant Memory Data Cache
A A
L 2

Global Memory

Constant Memory

Compute Device Memory

Tuesday, 11 May 2010

Basic Program Structure <3

NVIDIA

® Host program

® Create memory objects associated to contexts

® Compile and create kernel program objects Platform Layer
® Issue commands to command-queue

® Synchronization of commands

® Clean up OpenCL resources

® Query compute devices

Runtime
® Create contexts

® com pute Kernel (runs on device)
¢ C code with some restrictions and extensions

OpenCL
Language

© NVIDIA Corporation 2009

Tuesday, 11 May 2010

Example Code :
Vector Addition

® Add two vectors together:

c[i] = a[i] + bJ[i]
* Equivalent c loop:

int INumElements = | 1444777;

for (int i = 0;i < iNumElements; i++) {
c[i]=a[i]+b[i];
}

Tuesday, 11 May 2010

Example Code :
Vector Addition

e SetUp

e Set work sizes for kernel execution

* Allocate and init host data buffers

e Create context for GPU device

e Query compute devices

e Create command queue

e Create buffers on the GPU device

e Create and build a program

e Create kernel

e Set kernel arguments
e Core sequence

e Copy (write) data from host to GPU

* launch kernel in command-queue

e Copy (read) data from GPU to host... block
¢ Cleanup

Tuesday, 11 May 2010

Kernel Code <3

NVIDIA

® Source code for the computation kernel, stored in text file
(read from file and compiled at run time, e.g. during app. init)

+kernel void (_global *a, __global *b, __global SC
__global int iNumElements)
{

int iGID = get_global id(0);

if (iGID >= iINumElements)
{

return;

}

c[iGID] = afiGID] + b[iGID]:
}

© NVIDIA Corporation 2009

Tuesday, 11 May 2010

Demo of OpenCL
Computation

...Realllllllly fast.....

OpenCL and OpenGL

® Can set up your ‘context’ so that OpenGL
and OpenCL share buffers

® This points to a situation where OpenCL
calculates your data (very quickly) and
OpenGL plots it.

® The future for massive, complex
visualisations...

Demo of
OpenCL/OpenGL
interoperability

Two open standards in one....

Summary

® OpenCL a new standard for Parallel
computing

® Allows rapid computation (up to 100x
speed increase) of certain problems

® Can also be used to improve visualisation
times since shared buffers with OpenGL

