
Introduction to Subversion

Wesley Smith

Media Arts and Technology, University of California, Santa Barbara
Santa Barbara, CA 93106, USA
whsmith@mat.ucsb.edu

1 Introduction

Subversion is a version control system based on the copy-modify-merge paradigm. The
basic cycle involves each developer downloading a copy of the repository to their ma-
chine, called a working copy, making some modifications, and finally merging those
changes back with the central repository. The best resource for learning about Subver-
sion is the free book Version Control with Subversion available at http://svnbook.red-
bean.com/. There you will find a conceptual overview of the Subversion system, which
is essential to using it productively. In addition, the book contains a thorough techni-
cal examination of setting up a Subversion repository, integrating it into your coding
practices, and managing the repository over the lifetime of the projects it holds.

This manual is mean to be a brief primer on Subversion to get people who are not
only unfamiliar with Subversion but with source code management systems in general
up to speed and working productively as soon as possible. The following sections are
based on gathered experience and knowledge from using Subversion for the past few
years in a variety of contexts from small personal projects where I am the only author
to large commercial projects with thousands of files and many authors simultaneously
submitting modifications nearly every day.

1.1 Getting Started

Setting up a Subversion repository is a simple as executing a single shell command.
Configuring the Subversion server, however, takes a bit more work, but more than likely
the server hosting your repository has already been setup as a Subversion server so it’s
likely that you won’t need to worry about this. On the MAT network, maize has already
been configured to run the Subversion server.

1.2 Setting Up the Repository

If you are setting up a repository for personal use, you should create it in your home
directory on maize. If you are setting up a group project, you should set it up in
/mat/groups so that everyone can access it. You probably won’t have write permissions
in the groups folder, so ask the sysadmin (i.e. Larry) to hook you up.

Subversion has two basic basic commands (there are actually 9, but two are much
more frequently used). They are svn and svnadmin. svn is used to manage files located



2

in the repository while svnadmin deals with the repository directly. For setting up the
repository, we are going to use svnadmin. First, pick a directory where you want to
put your repository. Something like /repos is a good choice. If it doesn’t already exist,
create it.

On the server (maize.mat.ucsb.edu):

$ cd
$ mkdir repos
$ cd repos

Now that we have a folder where we want to put our repository, we can create it
using svnadmin:

$ svnadmin create myrepo

This command will create a new repository called ‘myrepo’ (substitute your own
name). You’re now done! If you list the files in the new repository, you should see
something that looks like:

README.txt
conf
dav
db
format
hooks
locks

1.3 Setting Up the Working Machine

The Subversion server can be configured to run in a number of different modes allowing
access through HTTP as well as SSH. In my experience, HTTP is slower than SSH and
thus not preferable. On maize, The Subversion server is configured to run under SSH.
Access to a Subversion repository through SSH is through a specially defined URL that
subversion understands, taking the format svn+ssh://username@server/path/to/repo.
For example, if your name is Hackme, your URL for the repository we just created
would be svn+ssh://hackme@maize.mat.ucsb.edu/home/hackme/repo/myrepo. This is
the URL you use from your working machine to access the repository. However, since
we’re using SSH, we’ll need a password each time we try to access the repository. This
can get very annoying very quickly. Fortunately, there’s a way to automatically login
through SSH using what’s called SSH key authentication. If you have already setup
SSH key authentication, you can skip this next section and move on to section 1.4.

SSH Key Authentication SSH key authentication allows one computer to login to an-
other through a generated key instead of the usual username/password system. Keys can
also require a username and password and many sites recommend generating keys this
way. For our purposes we are going to generate a key that doesn’t require a password
as we don’t want to have to type it in all of the time.



3

To setup SSH key authentication, we first generate a key on the working computer,
creating both a public and private key. The private key stays on the working computer.
The public key goes on the server you want to login to (i.e. maize.mat.ucsb.edu). Once
properly setup, you should be able to login to this machine (and use scp, svn, etc)
without a password. There are a number of steps to this process some of which you may
not need to do depending on what is already present on your machines. The instructions
below are for *NIX systems. Windows people should consider throwing their machines
out the window or at least installing a real OS with a real command line like Ubuntu.

The first step is to generate a public/private key pair. From your home directory on
your working mahcine:

$ ssh-keygen -trsa

You will be asked for a filename. Just use the default (i.e. ˜/.ssh/id rsa and hit ‘en-
ter’).

Next you will be asked for a password. Don’t type one in and hit ‘enter’ again twice.
Finally, you will see confirmation that the key generation command has succeeded and
created two files in your .ssh folder: id rsa and id rsa.pub. This last one is the public
key we will upload to the server.

To get the key to the server, copy the public key to your home directory:

$ cd .ssh
$ scp id rsa.pub username@servername:˜/
i.e. scp id rsa.pub hackme@maize.mat.ucsb.edu:˜/

Now, log in to the server to configure the key properly:

$ ssh username@server

On the server, we need to construct a .ssh directory if it doesn’t exist and place the
public key where SSH will be able to find it during the login process. If you don’t have
a .shh folder, do the following:

$ mkdir .ssh
$ chmod 755 .ssh

If you don’t have a file called authorized keys in your .ssh file, do the following

$ touch .ssh/authorized keys

To configure the public key and ensure correct permissions, do the following:

$ chmod 600 .ssh/authorized keys
$ cat id rsa.pub >>.ssh/authorized keys

At this point, you should have a properly configured setup with the recently up-
loaded public key now copied into the end of your authorized keys file. To test it out,
open a shell on your working machine and try to login:



4

$ ssh username@server

If it asks you for a password, something is not working properly. More than likely
this is due to there not being a line-break between successive public keys on the server’s
authorized keys file. After each key, there is an ‘==’ and some text marking its origin.
This should end a line of text. If there is more after it that looks like a bunch of encrypted
numbers, add a line-break in the appropriate spot and try again.

1.4 The First Commit

At this point, we are ready to put the first files in the repository. If the repository al-
ready has files in it, skip this section and go to ??. First, a little conceptual background
on Subversion. Subversion has been designed to make branching a project a core part
of the development process of a project. A branch is a parallel version of a project with
potentially significant differences. Depending on the project and the point in the devel-
opment cycle, a branch could be created for a number of reasons. The most common
are:

• To spawn a subproject from a larger main project that will diverge over time
• To keep the main branch (aka the trunk) in working order while someone rewrites

a significant section of code that will introduce incompatibilities

This last reason is the most common and allows a team of developers to keep push-
ing a project forward despite a section of code being introduced that would otherwise
break the build. In the end, this rewrite will be merged back into the trunk. Subver-
sion keeps a complete record of the entire repository structure for each revision which
increments on each commit. As a result, Subversion provides a number of tools for
automating the merge and update process.

The reason for bringing up the branching concept at this point is that it affects repos-
itory layout. The canonical subversion layout includes root folders called ‘branches’,
‘trunk’, and ‘tags’. If more than one project is placed in a repository, then each project
should have‘branches’, ‘trunk’, and ‘tags’ folders. To initialize the repository with this
layout, create a new folder on your working machine where you want to host your work-
ing copy. In this folder, create the folders “branches’, ‘trunk’, and ‘tags’. It should look
like this:

/localrepofolder
/branches
/tags
/trunk

Now we need to commit this to our repository on the server. The easiest thing to do
is use the svn import command. In a terminal, go to the location of the folders you want
to add to the repository. To add them, do the following:

$ svn import foldertoadd svn+ssh://username@server/path/to/repo
-m "initial commit"



5

The -m switch is for attaching a message to the import action so you know what you
were thinking at the time. You will get an error without it. Now that we’ve imported the
file structure to the repository, we need to make a local working copy because the import
command does not convert the imported files to a working copy. To get a copy of the
repository, go to a folder that you want to work from and type:

$ svn co svn+ssh://username@server/path/to/repo

You should see the list of files you just imported listed as they are downloaded along
with the text ”Check out revision 1”. Now you have a working copy. This means that
subversion knows the location of the repository on the server and you don’t have to type
it in explicitly anymore. From anywhere within your working copy, you can commit and
update and Subversion will know where to put the files.


