| Laelaps and the Teumessian Fox |

// A collaborative Project made by Emily Beckius, Lawrence Chen,

Adrian Esqueda, Yichen Li, and Wen Ying Liu.

- concept -

Traditionally, myths are verbally or textually documented and
communicated. In the age of hyper-media storytelling enabled by the
World Wide Web, linear, verbal means of storytelling is becoming
obsolete. The concept of our project is to recreate and recount this
ancient Greek myth that is suitable to modern audience by using
multimedia and modern technology, such as programming, robotics, and
augmented reality. We wanted to demonstrate the capabilities of
augmented reality while bringing what was once considered fantasy
into a plane of existence in which we can observe the myth here and
now, corporealizing the ethereal and immortalizing the ephemeral.

implementation :

Creating the markers:

Our project was split into several parts. For Part I, we planned on
an augmented environment using AR.js, which we could implement using
html. We tried creating custom markers through one of Jerome
Etienne’s libraries, but it didn’t work. The library he created was
outdated and flawed. So instead of creating custom markers, we
resorted to two preset markers that our AR code could recognize.

Creating the augmented environment:

All five of us made a tree using Unity or Rhino. After creating the
trees, we had to convert it into OBJ files. Once we did Adrian
combined the trees that looked the best and grouped them together,
making it seem like a forest.

In the AR code (shown on page 9), we programmed the our webcam to
recognize the two preset markers, so when it does, the augmented
forests would appear on screen.

Camera:

For Part II, we planned on using the Raspberry Pi’s webcam to
livestream, scan, and recognize the markers we laid out, so that
when we connect the pis’ cameras to the class projector, we could
see an augmented environment on the giant screen. To do that, we had
to connect to the Raspberry Pi’s camera.

Wen spent several weeks trying to figure out how to connect to the
Raspberry Pi’s webcam. First, she connected to the pi’s browser, and
opened up the html file that had the ar.js code onto pi’s web
browser. While she was able to get into the Raspberry Pi’s web
browser, and while she was able to execute js files on the pi’s
terminal, she was unable to access the pi’s webcam through the pi’s
browser. The pi’s browser didn’t work the same way her laptop’s
does.

Luckily, Rodger created a python file that allowed Wen to access the
pi’s webcam. When she got the code, all she had to do was connect to
Robotswarm’s wifi, log into the pi’s browser, and execute the python
code through terminal. She was able to connect to the pi’s webcam
after that, and we were able to livestream through its camera.
Unfortunately, because of the webcam’s framerate and the unstable
library the python code had, we were unable to have the Raspberry Pi
recognize the markers we had made. Instead of using the
livestreaming through the Raspberry Pi’s cameras, we decided to
livestream through Wen’s laptop. We wouldn’t be able to see the
augmented trees through the robots’ POV as they maneuver around, but
this was the best alternative.

1< [in) © 8 class.arts.ucsb.edu e alal

Robo-vision

implementation

Movement

Our goal for the movement part is to program the robot to draw out
constellations as they move.

0.06626959257 in !{(eachas

crif
Aefrinu egre

Jotn vt (0F viggtt Stups il
[

f fuwn , P Blak
whule ¢ crgle < egnin)y

o

0.0927in

0.0580 in Iz

96 degrees

We mapped out the angles and proportions of the drawings in order to
compose the Arduino commands.?2

Investigations of the center of turn on the robot (right) as well as
the initial designs for an ink ink.

142 degrees

<720.6 degrees

Left: drawings in a circle before calibrating, each new dog drawing
starts along the angle of the previous one’s tail (imaged-traced in
Adobe Illustrator since original drawing was indiscernable from
paper)

Right: measurement of angles in Adobe Illustrator to make sure that
each dog drawing is parallel to others.

Right: our first attempt at modifying pen refills.
Left: the “assembly line.”

- code : robotic drawing movement -

//a damn lot of libraries
#include <Wire.h>

//#include <Pushbutton.h>
//#include <Zumo32U4ProximitySensors.h>
#include <Zumo32U4Encoders.h>
//#include <Zumo32U4IRPulses.h>
//#include <PololuBuzzer.h>
//#include <FastGPIO.h>
#include <Zumo32U4Motors.h>
#include <LSM30@3.h>

#include <Zumo32U4.h>

#include <Zumo32U4LCD.h>

#include <TurnSensor.h>

//#include <Zumo32U4LineSensors.h>

#include <PololuHD44780.h>

//#include <USBPause.h>

#include <Zumo32U4Buttons.h>

#include <L3G.h>

#include <Zumo32U4Buzzer.h>

#include <QTRSensors.h>

#include <AccelStepper.h>

#include <SPI.h>

// YL: the code below is modified from
https://github.com/pvcraven/zumo_32u4_examples/blob/master/GyroSensorE
xample/GyroSensorExample.ino

// and
https://github.com/pvcraven/zumo_32u4_examples/blob/master/TurnExample
/TurnExample.ino

// and
https://github.com/pvcraven/zumo_32u4_examples/blob/master/MotorEncode
rs/MotorEncoders.ino

L3G gyro;

Zumo32U4LCD 1lcd;

Zumo32U4Motors motors;

Zumo32U4ButtonA buttonA;

Zumo32U4Encoders encoders;

int turnSpeed = 150;

int motorSpeed = 250;

int x = 4;

int y = 300;
int z = 100;
int i = 15;
// --- Setup Method

void setup() {
buttonA.waitForButton();
delay(100);
turnSensorSetup();
delay(500);
turnSensorReset();
}
void turnLeft(int degrees) {
turnSensorReset();
motors.setSpeeds(-turnSpeed, turnSpeed);
int angle = 0;
do {
delay(1);
turnSensorUpdate();
angle = (((int32_t)turnAngle >> 16) * 360) >> 16;
lcd.gotoXY (0, 0);
lcd.print(angle);
led.print(™ ");
} while (angle < degrees);
motors.setSpeeds(0, 9);

// Turn right
void turnRight(int degrees) {
turnSensorReset();
motors.setSpeeds(turnSpeed, -turnSpeed);
int angle = 0;
do {
delay(1);
turnSensorUpdate();
angle = (((int32_t)turnAngle >> 16) * 360) >> 16;
lcd.gotoXY (0, 0);
lcd.print(angle);
led.print(™ ");
} while (angle > -degrees);
motors.setSpeeds(0, 0);
¥
void forward(long count) {
encoders.getCountsAndResetLeft();
encoders.getCountsAndResetRight();
long countsLeft = 0;
long countsRight = 9;
motors.setSpeeds(motorSpeed, motorSpeed);
while(countsLeft < count) {
countsLeft += encoders.getCountsAndResetLeft();
countsRight += encoders.getCountsAndResetRight();
lcd.gotoXyY (@, 1);
lcd.print(countsLeft);
lcd.print(" ");
delay(2);
}s
motors.setSpeeds(0, 0);
¥
void reverse(long count) {
encoders.getCountsAndResetLeft();
encoders.getCountsAndResetRight();
long countsLeft = 0;
long countsRight = 9;
motors.setSpeeds(-motorSpeed, -motorSpeed);
while(countsLeft < count) {
countsLeft -= encoders.getCountsAndResetLeft();
countsRight -= encoders.getCountsAndResetRight();
lcd.gotoXyY (@, 1);
lcd.print(countsLeft);
lcd.print(" ");
delay(2);
}s
motors.setSpeeds(0, 0);

}
void Doggo() {

delay(y);
// because 0.0927in

forward(927/x);

delay(y);
turnLeft(96);

delay(y);
forward(580/x);

delay(y);
turnLeft(45);

delay(y);
forward(710/x);
turnRight(21);
delay(y);
forward(1474/x);
//should be pupper head and front limbs

delay(y);
turnRight(180);
forward(1474/x);
delay(y);

//go back
turnLeft(76);
delay(y);
forward(2899/x);
delay(y);
turnRight(76);

delay(y);
forward(1229/x);

delay(y);
turnRight(180);

delay(y);
forward(1229/x);

delay(y);
turnRight(93);

delay(y);

forward(918/x);

//turnRight(21);

//"this would make the new starting line parallel to the first
line of the dog, since the last line is not parallel to the first line
}
void StraightBoi(){

Doggo();
delay(y);
// turnLeft(10);
// delay(y);
turnLeft(i);
forward(z);
delay(y);

}
void loop() {

// Read the sensors

turnSensorUpdate();

int angle = (((int32_t)turnAngle >> 16) * 360) >> 16;
lcd.gotoXY (0, 0);

lcd.print(angle);

- code

lcd.print(" ");

//if we press A, then it starts:

bool buttonPress = buttonA.getSingleDebouncedPress();
if (buttonPress) {

while(1){
StraightBoi();
}
}
}

: augmented reality -

<!--AR.js by @jerome_etienne - github:
https://github.com/jeromeetienne/ar.js - info:
https://medium.com/arjs/augmented-reality-in-10-1lines-of-html-4e193ea9fdbf
-->
<IDOCTYPE HTML>
<html>
<head>
<title>Robo-vision</title>
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style”
content="black-translucent">
<link rel="apple-touch-icon" sizes="120x120"
href="ICON_iphone_retina.png" />
<meta name="viewport" content="width=device-width,initial-scale=1.0,
user-scalable=no">
</head>
<script src="https://aframe.io/releases/0.8.0/aframe.min.js"></script>
<script
src="https://cdn.rawgit.com/jeromeetienne/AR.js/1.5.5/aframe/build/aframe-
ar.js"></script>
<script>THREx.ArToolkitContext.baseURL =
"https://rawgit.com/jeromeetienne/ar.js/master/three.js/'</script>
<script
src="http://class.arts.ucsb.edu/artl22/Sites/s_18/esqueda_adrian/modified-
aframe-ar.js"></script>
<body style="margin : @px; overflow: hidden;'>
<a-scene embedded arjs='sourceType: webcam;'>
<a-assets>
<a-asset-item id="forest"
src="forest-original.obj"></a-asset-item>
</a-assets>
<a-marker preset="hiro">
<a-entity obj-model="obj: #forest" scale="0.0001 0.0001 0.0001"
position:" @ @" rotation="270 @ 0"></a-entity>
</a-marker>
<a-assets>
<a-asset-item id="forest2"
src="forest-original.obj"></a-asset-item>
</a-assets>
<a-marker preset="kanji">

<a-entity obj-model="obj: #forest2" scale="0.0001 0.0001
0.0001" position:"@ @ @" rotation="270 @ ©"></a-entity>
</a-marker>
<a-entity camera></a-entity>
</a-scene>
<style>
</style>
</html>

eventual realisation

poster

The final result for our project was an interactive piece that allowed the
audience to use their own devices to view the AR images. In addition, the
work included a visual representation of the Greek mythology of laelaps and
the Teumessian fox. Our two programmed robots performed simultaneously,
drawing out constellation patterns. A poster was included for outlining our
project as well as providing a QR code, which allowed our audience to
participate in the AR experience using their own devices. We also included
a live stream of the robots using a webcam, which exhibited our AR forests.
A little boy decided that our doggo was, in fact, a good doggo, so he gave
our robot many pets.

Laelaps and the Teumessian Fox

IN THE ENDLESS SPAGE CGCHASE
ART185 Optical Digital Culture - Intelligent Machine Vision

SCAN QR CODE
or go to
https://tinyurl.com/yauj79xo

BACKGROUND

l '
1 1
1 1
1 1
l '
1 1
1 1
1 1
l '
1 1
1 1
1 1
l '
1 1
1 1
1 1
l '
1 1
1 1
1 1
l '
1 1
1 1
1 1
l '
1 1
1 1
1 1
l '
1 1
1 1
1 1
l '
1 1
1 1
| In ancient Greek mythology, Laelaps was a hunting dog who never failed to 1
1 catch her prey. In one story, Laelaps was tasked to hunt down the Teumessian fox, 1
: a creature that can evade any predator, and thus, can not be caught. Their nev- :
' er-ending chase created a paradox: a hound that can catch any prey she sets her 1
1 eyes on, and a fox that can evade any predator. Because of their contradictory 1
! fates, Zeus turned them into stones, and casted them into the heavens as the con- !
: stellations we now know as Canis Major (Laelaps) and Canis Minor (Teumessian Fox), :
| where they have been chasing and evading each other ever since 1
1 1
1 1
1 1
l '
1 1
1 1
1 1
l '
1 1
1 1
1 1
l '
1 1
1 I
Il 1
! '
! 1
']
']
']
[1
[1
[1
i]
i 1
i 1
i 1

OBJECTIVE

Traditionally, myths are verbally or textually documented and communicated
In the age of hypermedia storytelling enabled by the World Wide Web, linear,
verbal means of storytelling is becoming obsolete. The concept of our project is
to recreate and recount this ancient Greek myth that is suitable to modern audi-
ence by using multimedia and modern technology, such as programming, robotics, and
augmented reality. We wanted to demonstrate the capabilities of augmented reality,
while at the same time, bring what was once considered fantasy into a plane of
existence where we can observe here and now, corporealizing the ethereal and
immortalizing the ephemera.

- distribution of labor -

Adrian Esqueda worked mostly on the AR aspect of the project. Found
and worked on the AR.js library and source code, which we relied
upon to create augmented reality. He attempted to create custom made
markers using Jerome Etienne’s custom marker-making website, which
we expected to use for the augmented reality scenes. Unfortunately,
the we weren’t able to create custom markers, so we resorted back to
preset markers (the kanji and hiro markers). Besides working on the
markers, Esqueda also worked on creating the augmented trees/forest
with Unity, and added textures to the trees with Rhino.
Unfortunately, none of the trees textures or colors translated well
when he turned them into OBJ files.

Wen Ying Liu, like Adrian, worked on the AR aspect of the project.
Attempted to create custom markers using Jerome Etienne’s custom
marker-generating website, but it didn’t work. She also designed a
tree using Unity, using YouTube tutorials to create a realistic
looking tree. She was, unfortunately, unable to convert the tree she
rendered into an OBJ file, so she left that task to Esqueda. Wen was
tasked on making the Raspberry Pi’s webcam to livestream, using the
code Rodger Luo wrote. She spent weeks attempting to connect her
computer to the Raspberry Pi’s browser and camera, and while she was
successful in getting the Raspberry Pi’s webcam to livestream real
time, the Raspberry Pi’s cameras were unable to scan the markers. We
initially wanted to see the augmented trees through the Raspberry
Pi’s POV (which would have been projected onto the big screen).
Since the camera framerate was too weak, and thus weren’t able to
recognize the markers, we decided to use Wen’s laptop’s webcam to
livestream the robots’ environment.

Lawrence Chen worked on the robots’ movements, AR and model
creation. Lawrence designed the poster and acquired materials such
as paper and additional materials for the project. He also designed
the original movement code, which would result in a pattern
resembling a 4/4 conducting gesture, as well as the initial plan for
an ink tank. He often provided transportation for the rest of the
group to classes and to meetings.

Yichen Li worked on the robots’ movements and drawing code. She
attempted to design an ink tank system along with Lawrence. However,
after researching types of pens and inks, it was concluded that the
only solution for using oil-based ink was modifying pen refills.
Along with Lawrence, Yichen tested out the initial movement code.
The initial movement code had to be abandoned since its errors were
significant. Yichen also tried attaching textures to obj. files on
Rhinoceros, which failed to import to the final website.

references -

Lawrence and VYichen also attempted using custom AR markers by
modifying the ar.js library as suggested by an online work-around.

Emily Beckius provided assistance for the Ar system, including
testing functions, creating models, and printing markers. She also
helped provide obj. Files. In addition, she had attention to detail
and assisted in the creation of the poster as well as set up.

https://github.com/jeromeetienne/AR. js/blob/master/README . md

https://github.com/RodgerLuo/robotic-vision/tree/master/streaming python

https://github.com/pvcraven/zumo_32u4_examples/blob/master/GyroSensorExampl

e/GyroSensorExample.ino

https://github.com/pvcraven/zumo_32u4_examples/blob/master/TurnExample/Turn

Example.ino

https://github.com/pvcraven/zumo_32u4_examples/blob/master/GyroSensorExampl

e/TurnSensor. cpp

https://github.com/pvcraven/zumo_32u4_examples/blob/master/MotorEncoders/Mo

torEncoders.ino

https://gizmodo.com/whats-the-ink-in-a-standard-rollerball-pen-made-of-1466

794448

https://katharine.org/tutorials/custom-markers-ar-js/

https://github.com/jeromeetienne/AR.js/blob/master/README.md
https://github.com/RodgerLuo/robotic-vision/tree/master/streaming_python
https://github.com/pvcraven/zumo_32u4_examples/blob/master/GyroSensorExample/GyroSensorExample.ino
https://github.com/pvcraven/zumo_32u4_examples/blob/master/GyroSensorExample/GyroSensorExample.ino
https://github.com/pvcraven/zumo_32u4_examples/blob/master/TurnExample/TurnExample.ino
https://github.com/pvcraven/zumo_32u4_examples/blob/master/TurnExample/TurnExample.ino
https://github.com/pvcraven/zumo_32u4_examples/blob/master/GyroSensorExample/TurnSensor.cpp
https://github.com/pvcraven/zumo_32u4_examples/blob/master/GyroSensorExample/TurnSensor.cpp
https://github.com/pvcraven/zumo_32u4_examples/blob/master/MotorEncoders/MotorEncoders.ino
https://github.com/pvcraven/zumo_32u4_examples/blob/master/MotorEncoders/MotorEncoders.ino
https://gizmodo.com/whats-the-ink-in-a-standard-rollerball-pen-made-of-1466794448
https://gizmodo.com/whats-the-ink-in-a-standard-rollerball-pen-made-of-1466794448
https://katharine.org/tutorials/custom-markers-ar-js/

