
What’s This Really About?
Carly Larsson

MAT 259A

In the Beginning
The Seattle Public Library dataset is information dense in many dimensions, but it is missing odd bits of information that would seem 
necessary to a library. Neither the bibNumber nor itemNumber of a book links you to the genre of the book. One can access the 
subject of the book, but subject keywords are non standardize and vary between copies of the same novel. This lack of standardized 
genre or subject isn’t an obstacle for Dewey classified books, but does pose a problem for nonDewey classified books. 
Presumably fiction, also known as nonDewey books, are arranged in the Seattle Public Library near similar books, as is the case in 
libraries across the United States. Yet, there seems to be no information in the database on how this sorting occurs. In my mind it 
would happen by genera, just as Dewey books are shelved by there numeric category. 
The Genre of a fictional book can be a hard to pin down. Perhaps it is not included in the database because it is not an absolute, and 
subject to change. For example, The Lord of the Rings could be shelved alongside classic pieces of literature or with other High 
Fantasy books. Though far from trivial, to demystify the situation an analysis on the keywords used in the subject of every book entry 
can be done to cluster books into genres and perhaps a definitive answer can be reached.

MySQL 
In order to do any analysis on the books and their subjects in the dataset, a subset of the books of interest had to be retrieved. The 
MySQL query needed to retrieve a dataset that included only books, so only those items in the dataset with itemType equal to acbk, 
arbk, bcbk, drbk, jcbk, or jrbk. Further, only nonDewey items would be retrieved for the dataset. I initially thought that there should be 
no duplicate copies of books represented in the dataset, but since we are interested in the subject and the keywords in the subject 
are not standardized across bibNumber you cannot aggregate. However, this change in plan ends up being useful later as a sanity 
check. If the algorithm works to cluster books based on genre, than the same book with slightly different keywords should end up very 
close together (the idea of distance in this space will be described later).
With all of these considerations the query below was developed:   

SELECT DISTINCT 
 typeNumBib.itemNumber,
 typeNumBib.bibNumber,
    title.title,
    subject.subject
FROM
    (
        SELECT itemType.itemType, itemToBib.itemNumber, itemToBib.bibNumber
        FROM itemType JOIN 
        itemToBib ON itemType.itemNumber = itemToBib.itemNumber
        WHERE itemType.itemType IN ("acbk", "arbk", "bcbk", "drbk", "jcbk", "jrbk")
    ) AS typeNumBib
 JOIN deweyClass ON deweyClass.bibNumber = typeNumBib.bibNumber AND 
    deweyClass.deweyClass = ""
    JOIN title ON typeNumBib.bibNumber = title.bibNumber
    JOIN subject ON typeNumBib.bibNumber = subject.bibNumber;

*To spare future students pain, the documentation for the deweyClass needs to be changed. Nondewey Class Objects, deweyClass 
field are not set to NULL but to the empty string “”. 

Analysis
Above is the query to gather the nonDewey books, but answers can only be found with further analysis. I decided to use Python to do 
the analysis because I’m very familiar with the language and it offers the most options in the way of Machine Learning libraries (it also 
has its own advanced visualization libraries, but can easily be ported to Processing). 
I began by figuring out how I was going to represent data in a usable way. This means taking qualitative data, descriptions about each 

book, and figuring out how to represent it in a quantitative way. There are many Python libraries that help with this process, I ended up 
using Numpy, CSV, and Sklearn.
Numpy: A python library for doing complicated math and statistics problems
CSV: Allows you to read and write CSV files very easily
Sklearn: Python Machine Learning Library

I decided to use the KMeans Algorithm, which sorts data into clusters. This was in the hopes that similar subjects would result in 
genre clustering.

import numpy as np
import csv
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import MiniBatchKMeans

subject_item = {}
cluster_dictionary = {}

def addToDictionary(dictionary_name, itemID, tokenVector):
    dictionary_name.update({itemID : tokenVector})
    
with open('NonDeweyData.csv') as csv_file:
    csv_reader = csv.reader(csv_file, delimiter=',')
    line_count = 0
    for row in csv_reader:
            addToDictionary(subject_item, row[0], row[2])
            line_count += 1
            if line_count > 500000: break

vectorizer = TfidfVectorizer(max_df=.01, max_features=1000,

                            min_df= .001, stop_words='english',
                            use_idf=True)
mymodel = vectorizer.fit_transform(subject_item.values())

true_k = 10
km = MiniBatchKMeans(n_clusters=true_k, init='k-means++', n_init=1,
                         init_size=1000, batch_size=1000, verbose= True)
km.fit(mymodel)

order_centroids = km.cluster_centers_.argsort()[:, ::-1]
terms = vectorizer.get_feature_names()
for i in range(true_k):
    print("Cluster %d:" % i, end='')
    for ind in order_centroids[i, :10]:
        print(' %s' % terms[ind], end='')
    print() 

Results 
Based off the subject, I was able to create ten clusters that seems to be grouped based on genre. There are many parameters, that I 
plan on continuing changing for better results, but below are the top ten keywords in each cluster. 

The next step is to pair the subject data points back with the titles, and come up with an accuracy heuristic. Due to time restrictions 
this will have to be part of future exploration. 

  



In the Beginning
The Seattle Public Library dataset is information dense in many dimensions, but it is missing odd bits of information that would seem 
necessary to a library. Neither the bibNumber nor itemNumber of a book links you to the genre of the book. One can access the 
subject of the book, but subject keywords are non standardize and vary between copies of the same novel. This lack of standardized 
genre or subject isn’t an obstacle for Dewey classified books, but does pose a problem for nonDewey classified books. 
Presumably fiction, also known as nonDewey books, are arranged in the Seattle Public Library near similar books, as is the case in 
libraries across the United States. Yet, there seems to be no information in the database on how this sorting occurs. In my mind it 
would happen by genera, just as Dewey books are shelved by there numeric category. 
The Genre of a fictional book can be a hard to pin down. Perhaps it is not included in the database because it is not an absolute, and 
subject to change. For example, The Lord of the Rings could be shelved alongside classic pieces of literature or with other High 
Fantasy books. Though far from trivial, to demystify the situation an analysis on the keywords used in the subject of every book entry 
can be done to cluster books into genres and perhaps a definitive answer can be reached.

MySQL 
In order to do any analysis on the books and their subjects in the dataset, a subset of the books of interest had to be retrieved. The 
MySQL query needed to retrieve a dataset that included only books, so only those items in the dataset with itemType equal to acbk, 
arbk, bcbk, drbk, jcbk, or jrbk. Further, only nonDewey items would be retrieved for the dataset. I initially thought that there should be 
no duplicate copies of books represented in the dataset, but since we are interested in the subject and the keywords in the subject 
are not standardized across bibNumber you cannot aggregate. However, this change in plan ends up being useful later as a sanity 
check. If the algorithm works to cluster books based on genre, than the same book with slightly different keywords should end up very 
close together (the idea of distance in this space will be described later).
With all of these considerations the query below was developed:   

SELECT DISTINCT 
 typeNumBib.itemNumber,
 typeNumBib.bibNumber,
    title.title,
    subject.subject
FROM
    (
        SELECT itemType.itemType, itemToBib.itemNumber, itemToBib.bibNumber
        FROM itemType JOIN 
        itemToBib ON itemType.itemNumber = itemToBib.itemNumber
        WHERE itemType.itemType IN ("acbk", "arbk", "bcbk", "drbk", "jcbk", "jrbk")
    ) AS typeNumBib
 JOIN deweyClass ON deweyClass.bibNumber = typeNumBib.bibNumber AND 
    deweyClass.deweyClass = ""
    JOIN title ON typeNumBib.bibNumber = title.bibNumber
    JOIN subject ON typeNumBib.bibNumber = subject.bibNumber;

*To spare future students pain, the documentation for the deweyClass needs to be changed. Nondewey Class Objects, deweyClass 
field are not set to NULL but to the empty string “”. 

Analysis
Above is the query to gather the nonDewey books, but answers can only be found with further analysis. I decided to use Python to do 
the analysis because I’m very familiar with the language and it offers the most options in the way of Machine Learning libraries (it also 
has its own advanced visualization libraries, but can easily be ported to Processing). 
I began by figuring out how I was going to represent data in a usable way. This means taking qualitative data, descriptions about each 

book, and figuring out how to represent it in a quantitative way. There are many Python libraries that help with this process, I ended up 
using Numpy, CSV, and Sklearn.
Numpy: A python library for doing complicated math and statistics problems
CSV: Allows you to read and write CSV files very easily
Sklearn: Python Machine Learning Library

I decided to use the KMeans Algorithm, which sorts data into clusters. This was in the hopes that similar subjects would result in 
genre clustering.

import numpy as np
import csv
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import MiniBatchKMeans

subject_item = {}
cluster_dictionary = {}

def addToDictionary(dictionary_name, itemID, tokenVector):
    dictionary_name.update({itemID : tokenVector})
    
with open('NonDeweyData.csv') as csv_file:
    csv_reader = csv.reader(csv_file, delimiter=',')
    line_count = 0
    for row in csv_reader:
            addToDictionary(subject_item, row[0], row[2])
            line_count += 1
            if line_count > 500000: break

vectorizer = TfidfVectorizer(max_df=.01, max_features=1000,

Above is a sample of the data retrieved with the previous SQL query. It had to be dealt with in post processing. Mainly, that 
itemNumbers (i.e. the same physical items in the library) more than occasionally have the same bibNumber and title, but a different 
entered subject. 

                            min_df= .001, stop_words='english',
                            use_idf=True)
mymodel = vectorizer.fit_transform(subject_item.values())

true_k = 10
km = MiniBatchKMeans(n_clusters=true_k, init='k-means++', n_init=1,
                         init_size=1000, batch_size=1000, verbose= True)
km.fit(mymodel)

order_centroids = km.cluster_centers_.argsort()[:, ::-1]
terms = vectorizer.get_feature_names()
for i in range(true_k):
    print("Cluster %d:" % i, end='')
    for ind in order_centroids[i, :10]:
        print(' %s' % terms[ind], end='')
    print() 

Results 
Based off the subject, I was able to create ten clusters that seems to be grouped based on genre. There are many parameters, that I 
plan on continuing changing for better results, but below are the top ten keywords in each cluster. 

The next step is to pair the subject data points back with the titles, and come up with an accuracy heuristic. Due to time restrictions 
this will have to be part of future exploration. 

  



In the Beginning
The Seattle Public Library dataset is information dense in many dimensions, but it is missing odd bits of information that would seem 
necessary to a library. Neither the bibNumber nor itemNumber of a book links you to the genre of the book. One can access the 
subject of the book, but subject keywords are non standardize and vary between copies of the same novel. This lack of standardized 
genre or subject isn’t an obstacle for Dewey classified books, but does pose a problem for nonDewey classified books. 
Presumably fiction, also known as nonDewey books, are arranged in the Seattle Public Library near similar books, as is the case in 
libraries across the United States. Yet, there seems to be no information in the database on how this sorting occurs. In my mind it 
would happen by genera, just as Dewey books are shelved by there numeric category. 
The Genre of a fictional book can be a hard to pin down. Perhaps it is not included in the database because it is not an absolute, and 
subject to change. For example, The Lord of the Rings could be shelved alongside classic pieces of literature or with other High 
Fantasy books. Though far from trivial, to demystify the situation an analysis on the keywords used in the subject of every book entry 
can be done to cluster books into genres and perhaps a definitive answer can be reached.

MySQL 
In order to do any analysis on the books and their subjects in the dataset, a subset of the books of interest had to be retrieved. The 
MySQL query needed to retrieve a dataset that included only books, so only those items in the dataset with itemType equal to acbk, 
arbk, bcbk, drbk, jcbk, or jrbk. Further, only nonDewey items would be retrieved for the dataset. I initially thought that there should be 
no duplicate copies of books represented in the dataset, but since we are interested in the subject and the keywords in the subject 
are not standardized across bibNumber you cannot aggregate. However, this change in plan ends up being useful later as a sanity 
check. If the algorithm works to cluster books based on genre, than the same book with slightly different keywords should end up very 
close together (the idea of distance in this space will be described later).
With all of these considerations the query below was developed:   

SELECT DISTINCT 
 typeNumBib.itemNumber,
 typeNumBib.bibNumber,
    title.title,
    subject.subject
FROM
    (
        SELECT itemType.itemType, itemToBib.itemNumber, itemToBib.bibNumber
        FROM itemType JOIN 
        itemToBib ON itemType.itemNumber = itemToBib.itemNumber
        WHERE itemType.itemType IN ("acbk", "arbk", "bcbk", "drbk", "jcbk", "jrbk")
    ) AS typeNumBib
 JOIN deweyClass ON deweyClass.bibNumber = typeNumBib.bibNumber AND 
    deweyClass.deweyClass = ""
    JOIN title ON typeNumBib.bibNumber = title.bibNumber
    JOIN subject ON typeNumBib.bibNumber = subject.bibNumber;

*To spare future students pain, the documentation for the deweyClass needs to be changed. Nondewey Class Objects, deweyClass 
field are not set to NULL but to the empty string “”. 

Analysis
Above is the query to gather the nonDewey books, but answers can only be found with further analysis. I decided to use Python to do 
the analysis because I’m very familiar with the language and it offers the most options in the way of Machine Learning libraries (it also 
has its own advanced visualization libraries, but can easily be ported to Processing). 
I began by figuring out how I was going to represent data in a usable way. This means taking qualitative data, descriptions about each 

book, and figuring out how to represent it in a quantitative way. There are many Python libraries that help with this process, I ended up 
using Numpy, CSV, and Sklearn.
Numpy: A python library for doing complicated math and statistics problems
CSV: Allows you to read and write CSV files very easily
Sklearn: Python Machine Learning Library

I decided to use the KMeans Algorithm, which sorts data into clusters. This was in the hopes that similar subjects would result in 
genre clustering.

import numpy as np
import csv
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import MiniBatchKMeans

subject_item = {}
cluster_dictionary = {}

def addToDictionary(dictionary_name, itemID, tokenVector):
    dictionary_name.update({itemID : tokenVector})
    
with open('NonDeweyData.csv') as csv_file:
    csv_reader = csv.reader(csv_file, delimiter=',')
    line_count = 0
    for row in csv_reader:
            addToDictionary(subject_item, row[0], row[2])
            line_count += 1
            if line_count > 500000: break

vectorizer = TfidfVectorizer(max_df=.01, max_features=1000,

                            min_df= .001, stop_words='english',
                            use_idf=True)
mymodel = vectorizer.fit_transform(subject_item.values())

true_k = 10
km = MiniBatchKMeans(n_clusters=true_k, init='k-means++', n_init=1,
                         init_size=1000, batch_size=1000, verbose= True)
km.fit(mymodel)

order_centroids = km.cluster_centers_.argsort()[:, ::-1]
terms = vectorizer.get_feature_names()
for i in range(true_k):
    print("Cluster %d:" % i, end='')
    for ind in order_centroids[i, :10]:
        print(' %s' % terms[ind], end='')
    print() 

Results 
Based off the subject, I was able to create ten clusters that seems to be grouped based on genre. There are many parameters, that I 
plan on continuing changing for better results, but below are the top ten keywords in each cluster. 

The next step is to pair the subject data points back with the titles, and come up with an accuracy heuristic. Due to time restrictions 
this will have to be part of future exploration. 

  


