What'’s This Really About?
Carly Larsson
MAT 259A

In the Beginning

The Seattle Public Library dataset is information dense in many dimensions, but it is missing odd bits of information that would seem
necessary to a library. Neither the bibNumber nor itemNumber of a book links you to the genre of the book. One can access the
subject of the book, but subject keywords are non standardize and vary between copies of the same novel. This lack of standardized
genre or subject isn’t an obstacle for Dewey classified books, but does pose a problem for nonDewey classified books.

Presumably fiction, also known as nonDewey books, are arranged in the Seattle Public Library near similar books, as is the case in
libraries across the United States. Yet, there seems to be no information in the database on how this sorting occurs. In my mind it
would happen by genera, just as Dewey books are shelved by there numeric category.

The Genre of a fictional book can be a hard to pin down. Perhaps itis not included in the database because it is not an absolute, and
subject to change. For example, The Lord of the Rings could be shelved alongside classic pieces of literature or with other High
Fantasy books. Though far from trivial, to demystify the situation an analysis on the keywords used in the subject of every book entry
can be done to cluster books into genres and perhaps a definitive answer can be reached.

MySQL

In order to do any analysis on the books and their subjects in the dataset, a subset of the books of interest had to be retrieved. The
MySQL query needed to retrieve a dataset that included only books, so only those items in the dataset with itemType equal to acbk,
arbk, bcbk, drbk, jcbk, or jrbk. Further, only nonDewey items would be retrieved for the dataset. | initially thought that there should be
no duplicate copies of books represented in the dataset, but since we are interested in the subject and the keywords in the subject
are not standardized across bibNumber you cannot aggregate. However, this change in plan ends up being useful later as a sanity
check. If the algorithm works to cluster books based on genre, than the same book with slightly different keywords should end up very
close together (the idea of distance in this space will be described later).

With all of these considerations the query below was developed:

SELECT DISTINCT
typeNumBib.itemNumber,
typeNumBib.bibNumber,
title.title,
subject.subject
FROM
(
SELECT itemType.itemType, itemToBib.itemNumber, itemToBib.bibNumber
FROM itemType JOIN
itemToBib ON itemType.itemNumber = itemToBib.itemNumber
WHERE itemType.itemType IN ("acbk", "arbk", "bcbk", "drbk", "jcbk", "jrbk")
) AS typeNumBib
JOIN deweyClass ON deweyClass.bibNumber = typeNumBib.bibNumber AND
deweyClass.deweyClass = ""
JOIN title ON typeNumBib.bibNumber = title.bibNumber
JOIN subject ON typeNumBib.bibNumber = subject.bibNumber;

*To spare future students pain, the documentation for the deweyClass needs to be changed. Nondewey Class Objects, deweyClass

“wn

field are not set to NULL but to the empty string “”.

Analysis

Above is the query to gather the nonDewey books, but answers can only be found with further analysis. | decided to use Python to do
the analysis because I'm very familiar with the language and it offers the most options in the way of Machine Learning libraries (it also
has its own advanced visualization libraries, but can easily be ported to Processing).

| began by figuring out how | was going to represent data in a usable way. This means taking qualitative data, descriptions about each

itemNumber bibNumber title subject

10 736719 Twice called the autobiographies of seventeen convert... Catholic converts

10 736719 Twice called the autobiographies of seventeen convert... Monasticism and religious orde...
20 2210267 Coming home California Fiction

20 2210267 Coming home Love stories

20 2210267 Coming home Models Persons Fiction

20 2210267 Coming home Sheriffs Fiction

21 1610828 Christmas box Christmas stories American

30 1760664 dA Aja que la boa de Jimmy se comiAA¢ la ropa Boa constrictor Juvenile fiction
30 1760664 dA Aja que la boa de Jimmy se comiA A¢ |a ropa Boa constrictors Fiction

30 1760664 dA Aja que la boa de Jimmy se comiA A¢ la ropa Farms Fiction

30 1760664 dA Aja que la boa de Jimmy se comiAA¢ la ropa Farms Juvenile fiction

30 1760664 dA Aja que la boa de Jimmy se comiAA¢ la ropa Schools Fiction

30 1760664 dA Aja que la boa de Jimmy se comiA A¢ la ropa Snakes as pets Fiction

30 1760664 dA Aja que la boa de Jimmy se comiAA¢ la ropa Snakes as pets Juvenile fiction
30 1760664 dA Aja que la boa de Jimmy se comiA A¢ |a ropa Spanish language materials

30 1760664 dA Aja que la boa de Jimmy se comiA A¢ la ropa Spanish language materials Fic...
33 2027533 Quidditch through the ages Rowling J K Knowledge Sports
33 2027533 Quidditch through the ages Sports in literature

50 66723 and now Miguel

55 237215 master builder being the life and letters of Henry Yates... Satterlee Henry Yates Bp 1843...
61 2209560 Wizards holiday Extraterrestrial beings Fiction

Above is a sample of the data retrieved with the previous SQL query. It had to be dealt with in post processing. Mainly, that
itemNumbers (i.e. the same physical items in the library) more than occasionally have the same bibNumber and title, but a different
entered subject.

book, and figuring out how to represent it in a quantitative way. There are many Python libraries that help with this process, | ended up
using Numpy, CSV, and Sklearn.

Numpy: A python library for doing complicated math and statistics problems

CSV: Allows you to read and write CSV files very easily

Sklearn: Python Machine Learning Library

| decided to use the KMeans Algorithm, which sorts data into clusters. This was in the hopes that similar subjects would result in
genre clustering.

import numpy as np

import csv

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import MiniBatchKMeans

subject_item ={}
cluster_dictionary = {}

def addToDictionary(dictionary_name, itemlID, tokenVector):
dictionary_name.update({itemID : tokenVector})

with open('NonDeweyData.csv') as csv_file:
csv_reader = csv.reader(csv_file, delimiter=",")
line_count=0
forrow in csv_reader:
addToDictionary(subject_item, row[0], row[2])
line_count +=1
if line_count > 500000: break

vectorizer = TfidfVectorizer(max_df=.01, max_features=1000,

min_df=.001, stop_words="english"',
use_idf=True)
mymodel = vectorizer.fit_transform(subject_item.values())

true_k =10

km = MiniBatchKMeans(n_clusters=true_k, init="k-means++", n_init=1,
init_size=1000, batch_size=1000, verbose= True)

km.fit(mymodel)

order_centroids = km.cluster_centers_.argsort()[:, ::-1]
terms = vectorizer.get_feature_names()
foriin range(true_k):
print(" Cluster %d:" % i, end="")
forind in order_centroids]i, : 10]:
print(* %s' % terms[ind], end="")
print()

Results
Based off the subject, | was able to create ten clusters that seems to be grouped based on genre. There are many parameters, that |
plan on continuing changing for better results, but below are the top ten keywords in each cluster.

Cluster
Cluster
Cluster
Cluster
Cluster
Cluster
Cluster
Cluster
Cluster
Cluster

trouble arthurs dog space private eye double man dont make

man time death big tale bear great dog world cat

la potter harry stranger mama frog fiction farm united america

moon pumpkin sun light red midnight ball bob man winter

dragons tale fourth son forest cat war moon dance shadow

ice queen hot house dead princess age cat tale adventure

house cat white shadows chicken complete street big tales fall

seven sisters tales house magic chinese brave years women brothers

dance come women death spring lion case snow song man

biography illustrated elizabeth alexander john thomas george new robert mary

0:
1:
2L
SiE
aly
5:
6:
7:
8:
0:

The next step is to pair the subject data points back with the titles, and come up with an accuracy heuristic. Due to time restrictions
this will have to be part of future exploration.

