
u c
bsThursday, January 14, 2021

Alex Dorsett

MAT259

Study of Movie Interest Over Time

SlideAlex Dorsett MAT259 Project 1

c
bs

u

Want to study movie popularity as a function of time
➡ How long does interest in a movie last after its release?
➡ Does interest drop-off exponentially?
➡ Does box-office success indicate there will be more interest in a movie?

Will count how many times a movie is checked each month
➡ Look at how this number changes over time

Compare this checkout rate between different categories of movies
➡ Only looking at movies that were released within the time period the data is available

Will accomplish this with MySQL, python, and ROOT

2

Project Overview

SlideAlex Dorsett MAT259 Project 1

c
bs

u

Requirements
➡ Released for public rental between 2006-2016

Movie selection is divided into 2 categories
➡ Critically-acclaimed
➡ Blockbusters

Critically-acclaimed
➡ Winners of academy award for best picture from

2007-2016

Blockbusters
➡ Collection of films which performed well in the

domestic box office from 2007-2016
➡ Tried to include mix of genres and intended audiences
➡ Release dates distributed evenly across time

Thought about studying the effect of a
sequel being released, but didn’t have
good enough statistics

3

Movie selection
Critically-Acclaimed Blockbusters

The Departed The Dark Knight

No Country For Old Men Avatar

Slumdog Millionaire Toy Story 3

The Hurt Locker The Avengers

The King’s Speech Skyfall

The Artist Gravity

Argo Frozen

12 Years a Slave The LEGO movie

Birdman American Sniper

Spotlight Star Wars Episode VII

SlideAlex Dorsett MAT259 Project 1

c
bs

u

Queried spl_2016 database with SQL
➡ Seattle Public Library data from 2006-present

The code gets really long when I want to get all the data at once
➡ For flexibility, I wrote a python script that generates the necessary SQL code for a list of movies I provide

For the analysis and plotting of the data, I used a package based in C++
➡ Put the data into histograms, and then fit them with an exponential distribution

4

Data pipeline

tango.mat.ucsb.edu

Python

MySQL ROOTspl_2016 CSV Plots

http://tango.mat.ucsb.edu/
http://tango.mat.ucsb.edu/

SlideAlex Dorsett MAT259 Project 1

c
bs

u

Initially had trouble getting data for
multiple movies with a single query

➡ Wanted to get the data as a function of
“months since release”

➡ Each movie has a different release date, so
the first column of data has to be defined
differently for each movie

Eventually figured out how to
accomplish this with a case
statement

➡ Here is an example of a query that gets the
data for 3 movies

➡ Wrote python script to generate the code for
the 20-movie query

Database data used
➡ outraw: cout, bibNumber, title

5

SQL Query
 1 SET @bibNum1 = 2647147; -- Store bibNumbers as variables

 2 SET @bibNum2 = 2871394;

 3 SET @bibNum3 = 2398486;

 4 SELECT @RelDate1:=MIN(cout) FROM spl_2016.outraw WHERE bibNumber = @bibNum1; -- Find earliest

 5 SELECT @RelDate2:=MIN(cout) FROM spl_2016.outraw WHERE bibNumber = @bibNum2; -- checkout date

 6 SELECT @RelDate3:=MIN(cout) FROM spl_2016.outraw WHERE bibNumber = @bibNum3; -- for each movie

 7 SELECT

 8 CASE -- Calculate MonthsSinceRelease separately for each movie in the first row

 9 WHEN bibNumber = @bibNum1 THEN FLOOR(DATEDIFF(cout, @RelDate1) / 28)

 10 WHEN bibNumber = @bibNum2 THEN FLOOR(DATEDIFF(cout, @RelDate2) / 28)

 11 WHEN bibNumber = @bibNum3 THEN FLOOR(DATEDIFF(cout, @RelDate3) / 28)

 12 END AS MonthsSinceRelease,

 13 -- Count how many movies with a given bibNumber were checked out each month (28 days)

 14 COUNT(IF(bibNumber = @bibNum1, FLOOR(DATEDIFF(cout,@RelDate1)/28),NULL)) as Avatar,

 15 COUNT(IF(bibNumber = @bibNum2, FLOOR(DATEDIFF(cout,@RelDate2)/28),NULL)) as Skyfall,

 16 COUNT(IF(bibNumber = @bibNum3, FLOOR(DATEDIFF(cout,@RelDate3)/28),NULL)) as 'The Departed'

 17 FROM

 18 spl_2016.outraw

 19 WHERE -- only include movies being counted

 20 bibNumber = @bibNum3 or

 21 bibNumber = @bibNum2 or

 22 bibNumber = @bibNum1

 23 GROUP BY 1 -- Group+order by MonthsSinceRelease

 24 ORDER BY 1

 25 LIMIT 48; -- Incluce 48 months of data

SlideAlex Dorsett MAT259 Project 1

c
bs

u

48 data points for each movie
➡ (Months since release, # checkouts)

Easier to study when plotted

6

Resulting data

0 5 10 15 20 25 30 35 40 45
Months Since Release

0

50

100

150

200

250

300

350R
en

ta
ls

Skyfall Activity

SPL Data

Skyfall Activity

SlideAlex Dorsett MAT259 Project 1

c
bs

u

Fit data with an exponential distribution

For data, Poisson errors are assumed
➡ Error on rentals/month =

Interpret best-fit as lifetime

Also examine

➡ observed value, uncertainty in observed value
➡ expected value (from fit function)
➡ number of bins

 value near 1 indicates fit matches data well
➡ See if fit performs well for each category

X X

λ

χ2
R =

1
nb − 1 ∑

i

(Oi − Ei)2

σ2
i

Oi = σi =
Ei =
nb =

χ2
R

7

Analysis Details

0 5 10 15 20 25 30 35 40 45
Months Since Release

0

50

100

150

200

250

R
en

ta
ls

The Avengers Activity

SPL Data

Exponential Fit

 = 20.0 (N = 5751)λ

 = 1.41
R
2χ

The Avengers Activity

f(t) = Ne− t
λ

c
bs

u

SlideAlex Dorsett MAT259 Project 1

Showing data+fit results
Overall, fits don’t look that great…

➡ Movies have interest bumps a year or more after release
➡ Even for movies with monotonically decreasing activity,

drop-off doesn’t seem to be exponential in nature

8

0 5 10 15 20 25 30 35 40 45
Months Since Release

0

20

40

60

80

100

120

140

160

180

200

R
en

ta
ls

The Departed Activity
SPL Data

Exponential Fit

 = 46.9 (N = 8278)λ

 = 5.42
R
2χ

The Departed Activity

Results: Critically-acclaimed movies

0 5 10 15 20 25 30 35 40 45
Months Since Release

0

50

100

150

200

250

300

350

R
en

ta
ls

The Hurt Locker Activity
SPL Data

Exponential Fit

 = 19.5 (N = 6998)λ

 = 6.95
R
2χ

The Hurt Locker Activity

0 5 10 15 20 25 30 35 40 45
Months Since Release

0

100

200

300

400

500

600

R
en

ta
ls

Argo Activity
SPL Data

Exponential Fit

 = 12.8 (N = 6620)λ

 = 11.26
R
2χ

Argo Activity

0 5 10 15 20 25 30 35 40 45
Months Since Release

0

100

200

300

400

500

R
en

ta
ls

No Country For Old Men Activity
SPL Data

Exponential Fit

 = 27.6 (N = 15738)λ

 = 4.71
R
2χ

No Country For Old Men Activity

0 5 10 15 20 25 30 35 40 45
Months Since Release

0

50

100

150

200

250

R
en

ta
ls

The Kingâ€™s Speech Activity
SPL Data

Exponential Fit

 = 39.2 (N = 9179)λ

 = 3.84
R
2χ

The Kingâ€™s Speech Activity

0 5 10 15 20 25 30 35 40 45
Months Since Release

0

100

200

300

400

500

R
en

ta
ls

12 Years a Slave Activity
SPL Data

Exponential Fit

 = 15.0 (N = 6887)λ

 = 4.49
R
2χ

12 Years a Slave Activity

0 5 10 15 20 25 30 35 40 45
Months Since Release

0

100

200

300

400

500

R
en

ta
ls

Slumdog Millionaire Activity
SPL Data

Exponential Fit

 = 31.3 (N = 15815)λ

 = 9.84
R
2χ

Slumdog Millionaire Activity

0 5 10 15 20 25 30 35 40 45
Months Since Release

0

50

100

150

200

250

R
en

ta
ls

The Artist Activity
SPL Data

Exponential Fit

 = 19.9 (N = 4947)λ

 = 6.72
R
2χ

The Artist Activity

0 5 10 15 20 25 30 35 40 45
Months Since Release

0

100

200

300

400

500

R
en

ta
ls

Birdman Activity
SPL Data

Exponential Fit

 = 12.3 (N = 6607)λ

 = 4.34
R
2χ

Birdman Activity

0 5 10 15 20 25 30 35 40 45
Months Since Release

0

50

100

150

200

250

300

350

400R
en

ta
ls

Spotlight Activity
SPL Data

Exponential Fit

 = 10.3 (N = 4535)λ

 = 4.15
R
2χ

Spotlight Activity

c
bs

u

SlideAlex Dorsett MAT259 Project 1

Showing data+fit results
Fits look better here

➡ Though some fits perform very well, overall behavior
doesn’t look exponential

9

0 5 10 15 20 25 30 35 40 45
Months Since Release

0

50

100

150

200

250

300

350

400

450R
en

ta
ls

The Dark Knight Activity
SPL Data

Exponential Fit

 = 22.9 (N = 11062)λ

 = 4.43
R
2χ

The Dark Knight Activity

Results: Blockbusters

0 5 10 15 20 25 30 35 40 45
Months Since Release

0

50

100

150

200

250

R
en

ta
ls

The Avengers Activity
SPL Data

Exponential Fit

 = 20.0 (N = 5751)λ

 = 1.41
R
2χ

The Avengers Activity

0 5 10 15 20 25 30 35 40 45
Months Since Release

0

50

100

150

200

250

300

R
en

ta
ls

The LEGO movie Activity
SPL Data

Exponential Fit

 = 17.9 (N = 5422)λ

 = 3.64
R
2χ

The LEGO movie Activity

0 5 10 15 20 25 30 35 40 45
Months Since Release

0

50

100

150

200

250

300

R
en

ta
ls

Avatar Activity
SPL Data

Exponential Fit

 = 28.6 (N = 7762)λ

 = 4.42
R
2χ

Avatar Activity

0 5 10 15 20 25 30 35 40 45
Months Since Release

0

50

100

150

200

250

300

350R
en

ta
ls

Skyfall Activity
SPL Data

Exponential Fit

 = 16.7 (N = 5649)λ

 = 4.43
R
2χ

Skyfall Activity

0 5 10 15 20 25 30 35 40 45
Months Since Release

0

50

100

150

200

250

300R
en

ta
ls

American Sniper Activity
SPL Data

Exponential Fit

 = 12.1 (N = 4152)λ

 = 3.12
R
2χ

American Sniper Activity

0 5 10 15 20 25 30 35 40 45
Months Since Release

0

20

40

60

80

100

120

140

160

180

200

220

R
en

ta
ls

Toy Story 3 Activity
SPL Data

Exponential Fit

 = 21.0 (N = 4633)λ

 = 1.74
R
2χ

Toy Story 3 Activity

0 5 10 15 20 25 30 35 40 45
Months Since Release

0

50

100

150

200

250

300

350R
en

ta
ls

Frozen Activity
SPL Data

Exponential Fit

 = 20.8 (N = 8084)λ

 = 2.58
R
2χ

Frozen Activity

0 5 10 15 20 25 30 35 40 45
Months Since Release

0

50

100

150

200

250

300R
en

ta
ls

Star Wars Episode VII Activity
SPL Data

Exponential Fit

 = 14.0 (N = 4587)λ

 = 6.65
R
2χ

Star Wars Episode VII Activity

0 5 10 15 20 25 30 35 40 45
Months Since Release

0

50

100

150

200

250

300

350

400

450

R
en

ta
ls

Gravity Activity
SPL Data

Exponential Fit

 = 16.7 (N = 7467)λ

 = 1.29
R
2χ

Gravity Activity

SlideAlex Dorsett MAT259 Project 1

c
bs

u

Showing lifetime, total rentals, and
chi-squared for each movie fit
On average, data in blockbuster
category is better described by an
exponential distribution
Doesn’t seem to be a significant
different in lifetime between the
categories
Lifetime is correlated with the year
the film was released

➡ More recent films have shorter lifetimes
➡ Could be caused by decreasing library traffic

Box-office success isn’t (positively)
correlated with rental numbers

➡ Might be anti-correlated

10

Category comparison
Critically-Acclaimed
Movie 𝜆 N 𝝌2

The Departed 46.9 8278 5.42

No Country For Old Men 27.6 15738 4.71

Slumdog Millionaire 31.3 15815 9.84

The Hurt Locker 19.5 6998 6.95

The King’s Speech 39.2 9179 3.84

The Artist 19.9 4947 6.72

Argo 12.8 6620 11.26

12 Years a Slave 15.0 6887 4.49

Birdman 12.3 6607 4.34

Spotlight 10.3 4535 4.15

Average 23.5 8560 6.2

Blockbusters
Movie 𝜆 N 𝝌2

The Dark Knight 22.9 11062 4.43

Avatar 28.6 7762 4.42

Toy Story 3 21.0 4633 1.74

The Avengers 20.0 5751 1.41

Skyfall 16.7 5649 4.43

Gravity 16.7 7467 1.29

Frozen 20.8 8084 2.58

The LEGO movie 17.9 5422 3.64

American Sniper 12.1 4152 3.12

Star Wars Episode VII 14.0 4587 6.65

Average 19.1 6457 3.4

SlideAlex Dorsett MAT259 Project 1

c
bs

u

Studied movie popularity over time using Seattle Public Library data acquired with MySQL

Organized the data into histogram form and fit with an exponential distribution

Was able to address my initial questions
➡ How long does interest in a movie last after its release? About 2 years
➡ Does interest drop-off exponentially? In some cases, but generally not.
➡ Does box-office success indicate there will be more interest in a movie? No, in fact it may be the opposite.

Possible further studies
➡ Expand movie list for each category to get better statistics
➡ Explore other functions to fit the data with

11

Conclusion

Backup

SlideAlex Dorsett MAT259 Project 1

c
bs

u

Run using Python v3.7.3
Takes a dictionary as input

➡ Keys: bibNumbers
➡ Entries: movie titles

Generates .sql file

13

Python code
 1 def GenerateSQL(movies):
 2 f = open('GetData.sql','w')
 3 i=1
 4 for num in movies:
 5 f.write('SET @bibnum'+str(i)+' = '+num+';\n')
 6 f.write('SELECT @RelDate'+str(i)+':=MIN(cout) FROM ')
 7 f.write('spl_2016.outraw WHERE bibNumber = @bibNum'+str(i)+';\n')
 8 i = i + 1
 9 f.write('SELECT\n')
 10 f.write('\tCASE\n')
 11 i=1
 12 for num in movies:
 13 f.write('\t\tWHEN bibNumber = @bibNum'+str(i)+' THEN ')
 14 f.write('FLOOR(DATEDIFF(cout, @RelDate'+str(i)+')/28)\n')
 15 i = i + 1
 16 f.write('\tEND AS MonthsSinceRelease,\n')
 17 i=1
 18 for num in movies:
 19 f.write('COUNT(IF(bibNumber = @bibNum'+str(i)+', ')
 20 f.write('FLOOR(DATEDIFF(cout, @RelDate'+str(i)+')/28), NULL)) as \''+movies[num]+'\'')
 21 if i == len(movies):
 22 f.write('\n')
 23 else:
 24 f.write(',\n')
 25 i = i + 1
 26 f.write('FROM \n \tspl_2016.outraw\nWHERE\n')
 27 i=1
 28 for num in movies:
 29 f.write('\tbibNumber = @bibNum'+str(i))
 30 if i == len(movies):
 31 f.write('\n')
 32 else:
 33 f.write(' or \n')
 34 i = i + 1
 35 f.write('GROUP BY 1\nORDER BY 1\nLIMIT 24;')
 36 f.close()
 37 return

SlideAlex Dorsett MAT259 Project 1

c
bs

u

Run using the ROOT
analysis framework,
based in C++

➡ https://root.cern.ch

Takes a list of movie titles
as input
Produces data plots with
fits and saves them as
PDFs

14

ROOT Code
 1 void MakePlots(vector<TString> movie_list) {
 2 // Generate window to draw on
 3 TCanvas *can = new TCanvas("can","can",800,800); gStyle->SetOptStat(0);
 4 TVirtualPad *pad = can->cd(1); pad->SetMargin(0.11,0.05,0.10,0.08);
 5 for(size_t i = 0; i < movie_list.size(); i++) {
 6 // Load appropriate row from CSV (%*lg skips a row)
 7 TString dataStruc = "%lg ";
 8 for(int j = 0; j < i; j++) dataStruc += "%*lg ";
 9 dataStruc += "%lg";
 10 // Load data from file into pairs of (x,y) points
 11 TGraph *data = new TGraph("Data48.csv",dataStruc," \t,;");
 12 int nbins = data->GetN();
 13 // Put data in histogram (for Poisson bin error)
 14 TH1D *h = new TH1D("h","data hist",nbins,0,nbins);
 15 for(int ip = 0; ip < nbins; ip++) {
 16 double x,y;
 17 data->GetPoint(ip,x,y);
 18 if(y > 0) {
 19 h->SetBinContent(ip,y);
 20 h->SetBinError(ip,sqrt(y));
 21 }
 22 }
 23 // Define function to fit data with
 24 TF1 *exp = new TF1("exp","[0]*ROOT::Math::exponential_pdf(x,1./[1])",0,nbins);
 25 exp->SetParameters(300,5);
 26 // Ensure all parameters are positive
 27 exp->SetParLimits(0,0,20000); exp->SetParLimits(1,0,50);
 28 h->Fit(exp);
 29 // Label everything
 30 h->SetTitle(movie_list.at(i)+" Activity");
 31 h->GetXaxis()->SetTitle("Months Since Release"); h->GetYaxis()->SetTitle("Rentals");
 32 h->Draw("e");
 33 // Make legend; include fit results
 34 TLegend *leg = new TLegend(0.59,0.68,0.95,0.9); leg->SetTextSize(.03);
 35 leg->AddEntry(h,"SPL Data"); leg->AddEntry(exp,"Exponential Fit");
 36 leg->AddEntry((TObject*)0,TString::Format("#lambda = %.1f (N = %.0f)", exp->GetParameter(1), exp->GetParameter(0)),"");
 37 leg->AddEntry((TObject*)0,TString::Format("#chi^{2}_{R} = %.2f",exp->GetChisquare()/(nbins-1)),"");
 38 leg->Draw();
 39 can->SaveAs("plots/"+to_string(i)+"_"+movie_list.at(i)+".pdf");
 40 }
 41 return;
 42 }

https://root.cern.ch
https://root.cern.ch

SlideAlex Dorsett MAT259 Project 1

c
bs

u

Saturation based on rental copies available
➡ Tried to use long enough sampling period to mitigate this issue

Effects of awards on movie popularity
➡ Expect movie popularity to decay over time, but may not be the case if awards are given after release
➡ In most cases, movies are released to dvd after the Academy Awards, so this shouldn’t cause too many issues

Decrease in library usage over time
➡ Hard to quantify the effect of

15

Potential data quality issues

