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Want to study movie popularity as a function of time 
➡ How long does interest in a movie last after its release? 
➡ Does interest drop-off exponentially? 
➡ Does box-office success indicate there will be more interest in a movie? 

Will count how many times a movie is checked each month 
➡ Look at how this number changes over time 

Compare this checkout rate between different categories of movies 
➡ Only looking at movies that were released within the time period the data is available 

Will accomplish this with MySQL, python, and ROOT
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Project Overview
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Requirements 
➡ Released for public rental between 2006-2016  

Movie selection is divided into 2 categories 
➡ Critically-acclaimed 
➡ Blockbusters 

Critically-acclaimed  
➡ Winners of academy award for best picture from 

2007-2016 

Blockbusters 
➡ Collection of films which performed well in the 

domestic box office from 2007-2016 
➡ Tried to include mix of genres and intended audiences 
➡ Release dates distributed evenly across time 

Thought about studying the effect of a 
sequel being released, but didn’t have 
good enough statistics
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Movie selection
Critically-Acclaimed Blockbusters

The Departed The Dark Knight

No Country For Old Men Avatar

Slumdog Millionaire Toy Story 3

The Hurt Locker The Avengers

The King’s Speech Skyfall

The Artist Gravity

Argo Frozen

12 Years a Slave The LEGO movie

Birdman American Sniper

Spotlight Star Wars Episode VII
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Queried spl_2016 database with SQL 
➡ Seattle Public Library data from 2006-present 

The code gets really long when I want to get all the data at once 
➡ For flexibility, I wrote a python script that generates the necessary SQL code for a list of movies I provide 

For the analysis and plotting of the data, I used a package based in C++ 
➡ Put the data into histograms, and then fit them with an exponential distribution
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Data pipeline

tango.mat.ucsb.edu 

Python

MySQL ROOTspl_2016 CSV Plots

http://tango.mat.ucsb.edu/
http://tango.mat.ucsb.edu/
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Initially had trouble getting data for 
multiple movies with a single query 

➡ Wanted to get the data as a function of 
“months since release” 

➡ Each movie has a different release date, so 
the first column of data has to be defined 
differently for each movie  

Eventually figured out how to 
accomplish this with a case 
statement 

➡ Here is an example of a query that gets the 
data for 3 movies 

➡ Wrote python script to generate the code for 
the 20-movie query 

Database data used 
➡ outraw: cout, bibNumber, title
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SQL Query
    1 SET @bibNum1 = 2647147; -- Store bibNumbers as variables

    2 SET @bibNum2 = 2871394;

    3 SET @bibNum3 = 2398486;

    4 SELECT @RelDate1:=MIN(cout) FROM spl_2016.outraw WHERE bibNumber = @bibNum1; -- Find earliest

    5 SELECT @RelDate2:=MIN(cout) FROM spl_2016.outraw WHERE bibNumber = @bibNum2; -- checkout date

    6 SELECT @RelDate3:=MIN(cout) FROM spl_2016.outraw WHERE bibNumber = @bibNum3; -- for each movie

    7 SELECT 

    8     CASE -- Calculate MonthsSinceRelease separately for each movie in the first row

    9       WHEN bibNumber = @bibNum1 THEN FLOOR(DATEDIFF(cout, @RelDate1) / 28) 

   10       WHEN bibNumber = @bibNum2 THEN FLOOR(DATEDIFF(cout, @RelDate2) / 28) 

   11       WHEN bibNumber = @bibNum3 THEN FLOOR(DATEDIFF(cout, @RelDate3) / 28)

   12     END AS MonthsSinceRelease, 

   13     -- Count how many movies with a given bibNumber were checked out each month (28 days)

   14     COUNT(IF(bibNumber = @bibNum1, FLOOR(DATEDIFF(cout,@RelDate1)/28),NULL)) as Avatar,

   15     COUNT(IF(bibNumber = @bibNum2, FLOOR(DATEDIFF(cout,@RelDate2)/28),NULL)) as Skyfall,

   16     COUNT(IF(bibNumber = @bibNum3, FLOOR(DATEDIFF(cout,@RelDate3)/28),NULL)) as 'The Departed'

   17 FROM

   18     spl_2016.outraw

   19 WHERE -- only include movies being counted

   20     bibNumber = @bibNum3 or

   21     bibNumber = @bibNum2 or

   22     bibNumber = @bibNum1

   23 GROUP BY 1 -- Group+order by MonthsSinceRelease

   24 ORDER BY 1

   25 LIMIT 48; -- Incluce 48 months of data
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48 data points for each movie 
➡ (Months since release, # checkouts) 

Easier to study when plotted
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Resulting data
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Fit data with an exponential distribution 

For data, Poisson errors are assumed 
➡ Error on  rentals/month =  

Interpret best-fit  as lifetime 

Also examine   

➡ observed value, uncertainty in observed value 
➡  expected value (from fit function) 
➡ number of bins 

 value near 1 indicates fit matches data well 
➡ See if fit performs well for each category 
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Analysis Details
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Showing data+fit results 
Overall, fits don’t look that great… 

➡ Movies have interest bumps a year or more after release 
➡ Even for movies with monotonically decreasing activity, 

drop-off doesn’t seem to be exponential in nature
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Results: Critically-acclaimed movies
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12 Years a Slave Activity
SPL Data

Exponential Fit
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12 Years a Slave Activity
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Showing data+fit results 
Fits look better here 

➡ Though some fits perform very well, overall behavior 
doesn’t look exponential 
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Results: Blockbusters
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Showing lifetime, total rentals, and 
chi-squared for each movie fit 
On average, data in blockbuster 
category is better described by an 
exponential distribution 
Doesn’t seem to be a significant 
different in lifetime between the 
categories 
Lifetime is correlated with the year 
the film was released 

➡ More recent films have shorter lifetimes 
➡ Could be caused by decreasing library traffic 

Box-office success isn’t (positively) 
correlated with rental numbers 

➡ Might be anti-correlated
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Category comparison
Critically-Acclaimed 
Movie 𝜆 N 𝝌2

The Departed 46.9 8278 5.42

No Country For Old Men 27.6 15738 4.71

Slumdog Millionaire 31.3 15815 9.84

The Hurt Locker 19.5 6998 6.95

The King’s Speech 39.2 9179 3.84

The Artist 19.9 4947 6.72

Argo 12.8 6620 11.26

12 Years a Slave 15.0 6887 4.49

Birdman 12.3 6607 4.34

Spotlight 10.3 4535 4.15

Average 23.5 8560 6.2

Blockbusters
Movie 𝜆 N 𝝌2

The Dark Knight 22.9 11062 4.43

Avatar 28.6 7762 4.42

Toy Story 3 21.0 4633 1.74

The Avengers 20.0 5751 1.41

Skyfall 16.7 5649 4.43

Gravity 16.7 7467 1.29

Frozen 20.8 8084 2.58

The LEGO movie 17.9 5422 3.64

American Sniper 12.1 4152 3.12

Star Wars Episode VII 14.0 4587 6.65

Average 19.1 6457 3.4
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Studied movie popularity over time using Seattle Public Library data acquired with MySQL 

Organized the data into histogram form and fit with an exponential distribution 

Was able to address my initial questions 
➡ How long does interest in a movie last after its release? About 2 years 
➡ Does interest drop-off exponentially? In some cases, but generally not. 
➡ Does box-office success indicate there will be more interest in a movie? No, in fact it may be the opposite.  

Possible further studies 
➡ Expand movie list for each category to get better statistics  
➡ Explore other functions to fit the data with
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Conclusion
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Run using Python v3.7.3 
Takes a dictionary as input 

➡ Keys: bibNumbers 
➡ Entries: movie titles 

Generates .sql file
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Python code
    1 def GenerateSQL(movies):
    2   f = open('GetData.sql','w')
    3   i=1
    4   for num in movies:
    5     f.write('SET @bibnum'+str(i)+' = '+num+';\n')
    6     f.write('SELECT @RelDate'+str(i)+':=MIN(cout) FROM ')
    7     f.write('spl_2016.outraw WHERE bibNumber = @bibNum'+str(i)+';\n')
    8     i = i + 1
    9   f.write('SELECT\n')
   10   f.write('\tCASE\n')
   11   i=1
   12   for num in movies:
   13     f.write('\t\tWHEN bibNumber = @bibNum'+str(i)+' THEN ')
   14     f.write('FLOOR(DATEDIFF(cout, @RelDate'+str(i)+')/28)\n')
   15     i = i + 1
   16   f.write('\tEND AS MonthsSinceRelease,\n')
   17   i=1
   18   for num in movies:
   19     f.write('COUNT(IF(bibNumber = @bibNum'+str(i)+', ')
   20     f.write('FLOOR(DATEDIFF(cout, @RelDate'+str(i)+')/28), NULL)) as \''+movies[num]+'\'')
   21     if i == len(movies):
   22       f.write('\n')
   23     else:
   24       f.write(',\n')
   25     i = i + 1
   26   f.write('FROM \n \tspl_2016.outraw\nWHERE\n')
   27   i=1
   28   for num in movies:
   29     f.write('\tbibNumber = @bibNum'+str(i))
   30     if i == len(movies):
   31       f.write('\n')
   32     else:
   33       f.write(' or \n')
   34     i = i + 1
   35   f.write('GROUP BY 1\nORDER BY 1\nLIMIT 24;')
   36   f.close()
   37   return
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Run using the ROOT 
analysis framework, 
based in C++ 

➡ https://root.cern.ch 

Takes a list of movie titles 
as input 
Produces data plots with 
fits and saves them as 
PDFs
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ROOT Code
    1 void MakePlots(vector<TString> movie_list) {
    2   // Generate window to draw on
    3   TCanvas *can = new TCanvas("can","can",800,800); gStyle->SetOptStat(0);
    4   TVirtualPad *pad = can->cd(1); pad->SetMargin(0.11,0.05,0.10,0.08);
    5   for(size_t i = 0; i < movie_list.size(); i++) {
    6     // Load appropriate row from CSV (%*lg skips a row)
    7     TString dataStruc = "%lg ";
    8     for(int j = 0; j < i; j++) dataStruc += "%*lg ";
    9     dataStruc += "%lg";
   10     // Load data from file into pairs of (x,y) points
   11     TGraph *data = new TGraph("Data48.csv",dataStruc," \t,;");
   12     int nbins = data->GetN();
   13     // Put data in histogram (for Poisson bin error)
   14     TH1D *h = new TH1D("h","data hist",nbins,0,nbins);
   15     for(int ip = 0; ip < nbins; ip++) {
   16       double x,y;
   17       data->GetPoint(ip,x,y);
   18       if(y > 0) {
   19         h->SetBinContent(ip,y);
   20         h->SetBinError(ip,sqrt(y));
   21       }
   22     }
   23     // Define function to fit data with
   24     TF1 *exp = new TF1("exp","[0]*ROOT::Math::exponential_pdf(x,1./[1])",0,nbins);
   25     exp->SetParameters(300,5);
   26     // Ensure all parameters are positive
   27     exp->SetParLimits(0,0,20000); exp->SetParLimits(1,0,50);
   28     h->Fit(exp);
   29     // Label everything
   30     h->SetTitle(movie_list.at(i)+" Activity");
   31     h->GetXaxis()->SetTitle("Months Since Release"); h->GetYaxis()->SetTitle("Rentals");
   32     h->Draw("e");
   33     // Make legend; include fit results
   34     TLegend *leg = new TLegend(0.59,0.68,0.95,0.9); leg->SetTextSize(.03);
   35     leg->AddEntry(h,"SPL Data"); leg->AddEntry(exp,"Exponential Fit");
   36     leg->AddEntry((TObject*)0,TString::Format("#lambda = %.1f (N = %.0f)", exp->GetParameter(1), exp->GetParameter(0)),"");
   37     leg->AddEntry((TObject*)0,TString::Format("#chi^{2}_{R} = %.2f",exp->GetChisquare()/(nbins-1)),"");
   38     leg->Draw();
   39     can->SaveAs("plots/"+to_string(i)+"_"+movie_list.at(i)+".pdf");
   40   }
   41   return;
   42 }

https://root.cern.ch
https://root.cern.ch
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Saturation based on rental copies available 
➡ Tried to use long enough sampling period to mitigate this issue 

Effects of awards on movie popularity 
➡ Expect movie popularity to decay over time, but may not be the case if awards are given after release 
➡ In most cases, movies are released to dvd after the Academy Awards, so this shouldn’t cause too many issues 

Decrease in library usage over time 
➡ Hard to quantify the effect of
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Potential data quality issues


