
Week 7: Trying Out New SQL Functions

Natalia DuBon

I. Abstract

This week’s assignment calls for us to test out new query functions that we may

have not used or explored before. After researching the links provided as well as

doing my own research, I have gathered the following queries that allow me to

truly check out the scope of the functions available in SQL and seeing which ones

I can apply for future or past projects.

II. Query Explorations

For the first query, I wanted to explore a new date/time function to which I’ve

never used before or had knowledge of. More specifically, I wanted to use a

function that could have potentially helped me further in previous projects.

Considering last week’s project in which I used machine learning to create a

linear regression model, I would have wished to do a daily time interval rather

than a weekly one. Therefore I explored the following query which gave me such

result (Query A):

Query A

SELECT DAYOFYEAR(cout) AS Day,

SUM(CASE

WHEN title LIKE '%data science%' Then 1

ELSE 0 END) AS 'Data Science'

FROM spl_2016.inraw



WHERE

YEAR(cout) = 2019

GROUP BY DAYOFYEAR(cout)

ORDER BY DAYOFYEAR(cout) ;

CSV:

Week 7 Query A - Week7_QueryA.pdf

The output is a table that is now divided by day of the year than weekly as I had

did last week. This would have been helpful because I would have had even more

data points and could have in turn (potentially) created a better model, or at least

a new model worth exploring more.

Last week I was able to do a statistical analysis of my dataset using R, but

this week I’d like to find a way to apply some of these methods in SQL to the best

of my ability. For this query, I am using the average function, the max function,

the min function, and finally the standard deviation function for the above data

set. This is similar to the boxplot I had created last week in R, in that it provided

information on the mean, the distance between the maximum and minimum, and

any outliers (Query B).

Query B

select

avg(counts) as mean,

max(counts) as max,

https://drive.google.com/file/d/1F8GFt86EW_MUM8v9r24t28sV_4oB5BTg/view?usp=share_link


min(counts) as min,

stddev_samp(counts) as sd

from(

SELECT DAYOFYEAR(cout) AS Day,

SUM(CASE

WHEN title LIKE '%data science%' Then 1

ELSE 0 END) AS 'counts'

FROM spl_2016.inraw x

WHERE

YEAR(cout) = 2019

GROUP BY DAYOFYEAR(cout)

ORDER BY DAYOFYEAR(cout)

) y

CSV:

Week7_QueryB - Week7_QueryB.pdf

From the output, we can see that the mean is 0.4607, the maximum is 4, the

minimum is 0, and the standard deviation is 0.6929208198210975. This would be

the same output had I imported the data set into R and run a similar statistical

analysis. It’s encouraging to see that the basics of statistics can also be made here

within SQL.

https://drive.google.com/file/d/15mAEj3jaCyT7AVTR7bS8Yn18X9GueArC/view?usp=share_link


For the next query, I decided to try out the substring function as well as

using multiple case functions. I had to choose a topic, so I chose three of Michael

Jackson’s albums during a three year span (2008-2010). Since Michael Jackson

passed during the year 2009, I just chose the year before and after (Query C).

Query C

SELECT

bibNumber, title, callNumber,

COUNT(bibNumber) AS Counts,

SUM(CASE

WHEN (YEAR(cout) = 2008) THEN 1

ELSE 0

END) AS '2008’',

SUM(CASE

WHEN (YEAR(cout) = 2009) THEN 1

ELSE 0

END) AS '2009',

SUM(CASE

WHEN (YEAR(cout) = 2010) THEN 1

ELSE 0

END) AS '2010'

FROM spl_2016.inraw

WHERE



SUBSTRING(itemType, 3, 4) = 'cd' and

title = 'Thriller' or

title = 'Bad' or

title = 'Dangerous'

GROUP BY bibNumber , title, callNumber ORDER BY Counts DESC

CSV:

Week7_QueryC - Week7_QueryC.pdf

From the output, we can see that for several years, 2009 is the maximum for each

type of item per title, but not always the case. Seeing the data laid out this way is

useful if later I wanted to dive deeper into this search. Using multiple case

functions ultimately made this dataset much more useful if we wanted to see a

progress in growth per year.

For the final query, I decided to try out an entirely new function that I

could not find from a basic SQL handbook. I ran into a function called REGEXP

https://drive.google.com/file/d/1w061-RjkcYU3wwUo5Qimo1OKw9WtTud8/view?usp=share_link


MySQL allows you to match patterns right in the SQL statements by using the

REGEXP operator. This statement performs a pattern match of a string_column

against a pattern.If a value in the string_column matches the pattern, the

expression in the WHERE clause returns true, otherwise it returns false.

If either string_column or pattern is NULL, the result is NULL. To find the

product whose name contains exactly 10 characters, you use ‘^' and ‘$ to match

the beginning and end of the product name, and repeat {10} times of any

character ‘.' in between as shown in the following query (Query D):

Query D

SELECT

DISTINCT title,

count(cout) as Count

FROM spl_2016.inraw

WHERE

title REGEXP '^.{10}$'

AND year(cout)= 2021

GROUP BY title

ORDER BY count(cout)

LIMIT 100;

CSV:

Week7_QueryD - Week7_QueryD (1).pdf

https://drive.google.com/file/d/1sV0BfUr9RusSULZSowTkVPINSrA-WM5w/view?usp=share_link


While using this specific operand isn’t something I see myself using in

comparison to my previous projects, I thought it was interesting enough to try out

and initially a bit challenging to understand. The purpose of this query was mainly

to try something that perhaps none of us have seen (at least to my knowledge).

III. Resources

https://www.mysqltutorial.org/mysql-regular-expression-regexp.aspx

https://dev.mysql.com/doc/refman/8.0/en/explain.html

https://www.w3schools.com/mysql/mysql_examples.asp

https://www.mysqltutorial.org/mysql-regular-expression-regexp.aspx
https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://www.w3schools.com/mysql/mysql_examples.asp

