UNIVERSITY OF CALIFORNIA
Santa Barbara

Transfer: An Interactive Program for Real-Time Spectral Transformations
and Visualization

A thesis submitted in partial satisfaction of the requirements for the degree
Master of Arts in Media Arts and Technology

by

Lance Jonathan Putnam

Committee in charge:
Professor JoAnn Kuchera-Morin, Chair
Stephen Pope
Professor Curtis Roads

November 2005

Transfer: An Interactive Program for Real-Time Spectral Transformations
and Visualization
Copyright (©) 2005
by

Lance Jonathan Putnam

il

ABSTRACT

Transfer: An Interactive Program for Real-Time Spectral Transformations
and Visualization

by

Lance Jonathan Putnam

Sound transformation in the spectral domain is a powerful tool for com-
posers and performers of computer music due to its inherent feature of separat-
ing the time and frequency information of sound. Spectral domain operations
can now be executed in real-time with interactive control on modern comput-
ers. However, the lack of a well-rounded, intuitive interface for controlling
these processes on multiple levels of interaction is a known problem. Transfer
is a real-time spectral transformation and visualization program with a graph-
ical interface that allows the creation of a modular signal processing graph for
modifying the spectral data. The principle behind Transfer is that common
tasks should be simple and intuitive to accomplish, so that more time can be
spent doing creative work. Transfer offers processing modules in six distinct
categories: magnitude, frequency, phase, peak, time, and utility. As an exam-
ple, time-stretching and pitch-shifting can be accomplished by using time and
frequency ’scale’ modules. Other typical spectral processing algorithms such as
low-/high- /band-pass filtering, noise reduction, and convolution are also easily
accomplished. The ability to arrange the flow of spectral data processing and
visualize the data in real-time provides instantaneous aural and visual feedback
enabling rapid experimentation into new ways of modifying sound.

iii

Contents

1 Introduction 1
2 Background 3
2.1 The Phase Vocoder 3
2.2 Existing Phase Vocoder Interfaces)
2.2.1 Program Modules)

222 Editors.)

223 Plugins.o)

3 Transfer Program Design 7
3.1 Overview. 7
3.2 Module Design 8
3.3 Catalog of Spectral Transformations. 8
3.3.1 Magnitude Transforms 9

3.3.2 Frequency Transforms, 12

3.3.3 Phase Transforms 13

3.3.4 Time Transforms 14

3.3.5 Peak Transforms 15

3.3.6 Utilities 16

3.4 Module-level Interaction 17
3.5 Visual Feedback of Auditory Signals 18

4 Transfer Implementation 19
5 Results 21
6 Future Work 22
7 Conclusion 24
A Fourier Transform 25
A.1 Discrete Fourier Transform 26
A.2 Data Representations 27
A21 Samples 27

A.2.2 Rectangular Form 28

A23 Polar Form 28

A.2.4 Magnitude/Frequency Form 29

v

B STFT Analysis Parameters

31

Chapter 1

Introduction

Sound transformation in the spectral domain is a powerful tool for composers
and performers of computer music due to its inherent feature of separating
the time and frequency information of sound. The phase vocoder is a popular
technique in the computer music field for doing spectral-based sound trans-
formation. Spectral domain operations can now be executed in real-time with
interactive control on modern computers, however, no well-rounded, intuitive
interfaces for controlling these processes on multiple levels of interaction are to
be found. Much of the existing software interfaces for working in the frequency
domain do not allow musicians, both composers and performers, to fully utilize
its sonic potential.

As computers increase in speed and memory, an increasing number of al-
gorithms and ways of processing data have become capable in real-time. Real-
time operation is important for quickly assessing the behavior of algorithms,
exploring large amounts of data, and having interactive control of systems.
Unfortunately, doing these things in an intuitive manner without sacrificing
flexibility of interaction is a difficult problem. The field of computer music
faces these issues as do many other fields.

Human operators of computer software tend to have difficulty working with
processes on multiple levels of details simultaneously. In the context of com-
puter music, these levels of interaction lie on a continuum of timed events but
can be segmented into nine distinct scales demarcated by perceptual bound-
aries [15]. For simplicity, only three levels of interaction will be used to evaluate
software interfaces- sample, module, and sequence. Interaction on the sample
level involves the manipulation of raw sound data described by pressure in the
time domain and/or frequency, phase and magnitude in the frequency domain.
The next level of interaction is marked by specification of signal flow between
sound processing modules with input and output ports. This follows the con-
cept of the unit generator conceived by Max Matthews at Bell Labs. The final
level of interaction, the sequence, is concerned with the timed triggering of
musical events. Sequences are used to execute things such as instantiation of
concurrently running modules, modification of module parameters, and rear-
rangement of module connections. The sequence has a resemblence to what is
historically known as the musical score.

(a)
o N n n
>_‘ _‘ tme| id | p1 | p2
0 | Sawl A4 0.2
SawOsc] s
2 E5
i s
Filter 6 B4
7 D5
T R
L]
(b) (c)

Figure 1.1: Interaction at the level of the (a) sample, (b) module and (c)
sequence.

Chapter 2

Background

2.1 The Phase Vocoder

The vocoder (voice coder), developed by Homer Dudley in the 1930s, was the
first electronic device to encode and decode human speech. His vocoder en-
coded a voice signal by sending it through a parallel bank of band-pass filters.
The output of the filter bank determined the energy of the signal at each filter’s
center frequency. This type of vocoder that uses a bank of band-pass filters
is commonly referred to as a channel vocoder. The phase vocoder was origi-
nally proposed as an improvement over the channel vocoder for higher fidelity
speech transmission [4], however, it has been largely ignored by the telecom-
munications field in favor of lower bandwith/quality techniques such as linear
predictive coding. Computer musicians, in contrast, are more concerned with
quality over bandwidth and have therefore welcomed the phase vocoder with
open arms. The phase vocoder remains to this day a popular tool for sound
analysis largely due to the computational efficiency of the underlying FFT
and the intuitive nature of its basis functions, sinusoids. The term “phase” in
phase vocoder comes from the fact that in addition to deriving the magnitudes
of component sinusoids from a signal, as with a channel vocoder, you also get
their phase. This extra information leads to better overall quality of resynthe-
sis and time-scaling, as well as a convenient means for doing convolution via
multiplication in the frequency domain.

The phase vocoder is a multi-step analysis-modification-resynthesis process
based on the short-time Fourier transform (STFT), a DFT of overlapping win-
dows of time domain samples. The STFT is used to improve the time resolution
of the analysis, lessen the amount of spectral “smearing’, and circumvent phase
discontinuities during resynthesis. However, these improvements have a cost
of generating more frequency domain data due to the redundancy of overlap-
ping windows. This is commonly referred to as “data explosion” and naturally
presents difficulties for computational efficiency and data storage. The follow-
ing is a list of steps involved with the process of doing spectral transformations
with the phase vocoder. Many classes of transformations require the spectral
data be converted to another form, such as the magnitude/frequency form for

Frequency

L» Time

(a) (b)

Figure 2.1: Time-frequency resolution grids of (a) time domain sampling and
(b) frequency domain sampling (DFT). Each time-frequency energy band, sig-
nified by boxes, has the same area due to the the time and frequency resolution
trade-off.

doing time-scaling.

1. Analysis (STFT)
a. Slide analysis window
b. Perform FFT
2. Spectrum Modifications
a. Convolution
b. Data conversion (rectangular — polar)
c. Magnitude/Phase transformations
d. Data conversion (polar — magnitude/frequency)
e. Frequency/Time transformations
3. Resynthesis
a. Data conversion (7?7 — rectangular)
b. Perform IFFT
c. Window output time samples
d. Overlap-add

The most interesting aspect of the phase vocoder, from a musician’s point of
view, is the stage between analysis and resynthesis where new sonic textures
can be formed, transformation. The phase vocoder is a powerful tool for musi-
cal endeavor since it decouples the time and frequency information of a signal.
This feature is most commonly exploited for pitch-scaling a signal without ef-
fecting its duration and changing the duration of a signal without modifying its
pitch. Another major advantage of using the phase vocoder for manipulating
sound is that it is quite straightforward to avoid frequency-aliasing, a caveat of
many time domain transformations. This lends well to a less restrictive range
of frequency-oriented transformations.

2.2 Existing Phase Vocoder Interfaces

2.2.1 Program Modules

Music programming environments such as CSound, Max/MSP, and SuperCol-
lider supply a phase vocoder as multiple independent modules that do analysis,
spectral modifications, and resynthesis. The user is expected to design a larger
modular system that consists of one or more of these components. This model
provides the musician with superior creative flexibility for musical processing
since the interconnections between modules can be specified. The downside of
this approach is that additional time must be spent as a systems and interface
designer since modules are only purposeful within a larger context.

pfftxayn

main patch sub—patch

|

fitin™ 1 fitin™ 2 Sunthbef{"help-brick", { arg out=8,bufrum=0;
: 'ﬁ_‘ i '=n.,“~ war in, chainj
% = in = {WhiteNoize.ar{®.2)} .dup;
i ey : '5,, ﬁ chain = FFT{bufrum, in};
I chain = PY_Bricklall{chain, SinDsc.kr(8.1)3
—_— Out.ar{out, IFFT{chain}};
P, — Froplauts, [hout, 8, bufrum,b.bufnum] 33
[!
; :)
(D) Triout 1 (b)

Figure 2.2: Phase vocoder modules in (a) Max/MSP and (b) SuperCollider 3.

2.2.2 Editors

There is clearly a need by many composers to have access to the sample level
details of spectral data for doing sound transformations. The most success-
ful interfaces for this are editor based ones that rely on a task-based mode
of interaction through the keyboard and mouse. This form of interaction is
based on the model/view/controller design pattern. Interactive control is gen-
erally focused on the sample level making this type of software unsuitable for
a musical performance. One of the first software tools for doing spectral trans-
formations was the Composers’ Desktop Project (CDP) developed mainly by
British composer Trevor Wishart. [17] Wishart has more recently created a
graphical editor, Sound Loom, for using the sound transformations in CDP.

2.2.3 Plugins

A plugin is a module that is dynamically loaded at run-time by a host ap-
plication to perform a specific processing task. Since the task of a plugin is
well-defined and usually quite rigid, they can also offer an intuitive, graphical
interface. This is what distinguishes a plugin from a module. Plugins have
the advantage that they pre-package a commonly used configuration of lower-
level modules and can be used ‘out-of-the-box.” The disadvantage is that you

02Cymbale.aiff

16

oz oi o5 o5 i o e oab sz 2z T awEE]

(a)

Figure 2.3: Screenshots from sample-level phase vocoder editors (a) Ircam’s
AudioSculpt and (b) CDP’s Sound Loom.

depend on what the maker of the plugin thinks is an intuitive interface and
many times only a limited range/detail of parameter values is possible. The
most common types of spectral domain plugins are pitch- and time-scalers,
noise-reducers, high-resolution graphic equalizers, and multi-band dynamics
Processors.

—SPEED

Precision Tempo and Pitch Moditication

i »Tempo » Pitch il

Pitch’n Time
[empo MODE

Zoom _-7
Variable Time Stretch

91.666667 % 123 cents

7 EEETED vom |

Figure 2.4: Examples of plugins that use spectral processing techniques. Ser-
ato’s Pitch 'n Time (a) and SoundToy’s Speed (b) are designed with a set
purpose in mind and can therefore offer a more intuitive interface.

Chapter 3

Transfer Program Design

3.1 Overview

Transfer has a graphical, modular software interface for performing spectral
transformations in real-time. The goal behind the development of Transfer was
to design an interface that would enable a more complete and human-centered
exploration of frequency domain transformations than existing software does.
This research was focused on working on the module-level and visual modes of
interaction.

Figure 3.1: Screenshot of Transfer.

The Transfer workspace is divided into three separate areas: the palette,
the graph, and the visualizer. The palette, on the left side of the screen, is a
list of the available spectral processing modules that can be instantiated into
the signal processing flow. The graph region on the top right is where the user
can modify the module parameters and arrange their execution order in the
graph. The bottom right section is a scope for visualizing time domain and

frequency domain representations of the processed signal.

3.2 Module Design

The basic underlying principle of Transfer is that spectral data is passed
through a signal graph consisting of interconnected filtering modules. The
modules are black boxes that take in an input signal, modify it according to
an algorithm with n parameters, and output the modified signal. A diagram
showing the behavior of a module is shown in Figure 3.2.

input samples]

parameter 1 [j__ | modification
parameter 2 [] algorithm
parameter n [J-] output samples

Figure 3.2: A signal processing module.

The module abstraction is important for allowing composers and performers
to operate on sound in a higher-level, more intuitive manner through a small
set of control parameters. Working with sound on the module level allows one
to quickly perceive the effects of modifications and thus more easily shape the
timbre of sounds.

- =

prokb 0.27
width 290

Figure 3.3: Screenshot of a module icon within Transfer.

3.3 Catalog of Spectral Transformations

Spectral modules were divided into six unique categories in Transfer: magni-
tude, frequency, phase, time, peak and utility. The category of module indi-
cates what effect the module has on the spectrum while its name was chosen to
most accurately and concisely describe what the algorithm does. Magnitude
modules are based on the simple multiplication of individual bins or groups

of bin magnitudes by a certain transfer function. This class of transforma-
tion encompasses low-/high-/band-pass, spectral filtering, spectrum equaliz-
ing, noise-removal and -preservation and other forms of circular convolution.
Frequency modules modify the frequency content of the spectrum by moving
bin magnitudes around. This category includes processes such as pitch-shifting,
frequency-shifting, and spectrum reversing. Phase modules apply operations
to the phase information of the spectral data. This class of transformation in-
cludes chorusing, comb-filtering, smearing transients, and making robotic-like
sounds. The time modules generally effect when spectral frames are played
back. This category includes time-stretching and time-freezing. Peak modules
operate on a higher level feature of the spectrum, the peaks, which are defined
as bins whose magnitude is higher than its two neighboring bins. This class
of effect is very similar to magnitude transformations, but tends to separate
the sinusoidal components from the noise components of the sound. Finally,
the utility class of module has special functions that control the behavior of
downstream modules, such as selecting a certain frequency range to operate on
or choosing a seed for random-based effects. Figure 3.4 shows a heirarchy of
the different sound transformation modules, as well as their relation to existing
techniques.

The next sections present a more detailed description of the modules im-
plemented in Transfer.

3.3.1 Magnitude Transforms

This is a class of transformations that modifies only the magnitudes of the
frequency samples. These are the “safest” type of transformations in that they
will not affect the phase information of the signal and thus preserve the original
transients. Many spectral domain processes tend to fall in this category of
transformation including noise reduction, graphic equalization, cross-synthesis,
and multi-band dynamics.

Band Thin
Randomly thin bands of frequencies.

Parameters:
prob- probability from 0 to 1 of a band being zeroed
width- width in Hz of the frequency bands

Curve
Multiplies spectrum magnitudes by an exponential curve ranging in am-
plitude from 1 to 0. This can be used for simple low- and high-pass
filtering with adjustable roll-off amount.

Parameters:
freg- starting frequency of the curve

9

Class Name Other Names
Magnitude Curve High-/Low-pass Filter
Impulse Harmonize
Moving Average
Offset Noise Reduce
Pass Threshold, Noise Reduce, Gate
Reject Suppress, Limit
Saw
Scale Gain, Equalize (EQ), Filter
Thin Disintegrate/Coalesce, Scatter
Thin Morph
Triangle Feedforward Comb Filter
Frequency Biscale
Offset Frequency-shift
Pack
Reverse Invert
Scale Pitch-shift
Scatter Shake
Swap
Warp Frequency-stretch
Phase Offset
Scale
Time Freeze
Offset Delay
Scale Time-stretch, Time-contract
Peak Pass Trace
Reject Suppress, Limit
Voices Bare
Utility Range Band
Seed

Figure 3.4: Hierarchy of Transfer spectral processing modules and their rela-
tionship to known techniques.

width- frequency width of the curve in Hz where positive is low-pass
and negative is high-pass
curve- degree of curvature

Impulse
Multiplies spectrum by a set of linearly spaced unit impulses. Has the
effect of making a pitched sound at the frequency distance between the
impulses. Harmonic pitches can be made with integer scaling ratios and
inharmonic sounds can be created with non-integer scale values.

Parameters:
freq- frequency spacing between impulses
scale- amount to scale frequency spacing after first impulse

Saw

Multiplies spectrum magnitudes by a saw wave with amplitude ranging
from 0 to 1. Has a similar effect as a time domain feedforward comb filter.

10

Parameters:
freq- frequency of the saw wave
phase- initial phase from 0 to 1 of the waveform starting at 0 Hz
direction- whether the wave ramps up or down
order- how many times to multiply the spectrum by the saw wave

Triangle
Multiplies spectrum magnitudes by a triangle wave with amplitude rang-
ing from 0 to 1. Has a similar effect as a time domain feedforward comb
filter.

Parameters:
freq- frequency of the triangle wave
phase- initial phase from 0 to 1 of the waveform starting at 0 Hz
order- how many times to multiply the spectrum by the triangle
wave

Magnitude Average
Applies moving average filter to magnitudes. This tends to blur the spec-
trum resulting in a more noisy sound with a similar formant structure.

Parameters:
order- number of bins to average at a time

Magnitude Pass
Passes only bins above a certain magnitude threshold. This transforma-
tion is commonly used for noise reduction taking advantage of the fact
that unwanted noisy parts of the spectrum tend to have lower mangi-
tudes.

Parameters:
threshold- threshold value in dB
relativity- crossfade between absolute and relative thresholding

Magnitude Reject
Rejects bins above a certain magnitude threshold. This has the opposite
effect of magnitude passing- only the noisy components of the spectrum
are passed through.

Parameters:
threshold- threshold value in dB
relativity- crossfade between absolute and relative thresholding

Magnitude Scale/Offset
Scales and offsets spectrum magnitudes. This can be used for gain control

11

or for simple spectral filtering by applying it within a range of frequen-
cies. Offsetting the magnitudes by negative amounts has a similar effect

to magnitude passing.

Parameters:
scale- amount to scale magnitudes
offset- amount in dB to offset magnitudes

freq scale

width prob = 8.5 n
-

Figure 3.5: Magnitude transformations (a) band thin, (b) comb, (c) pass, and
(d) reject.

3.3.2 Frequency Transforms

Frequency based transformations are desirable to do with the phase vocoder
due to the intuitive nature of frequency samples and since it is very easy to
avoid frequency aliasing. Time domain pitch-shifting and frequency-shifting
introduce pronounced artifacts when shifting upwards by large amounts since
high frequencies fold over at the Nyquist frequency. Also, time domain process-
ing does not offer any control over the movement of bands of frequency content
in the sound. Spectral domain frequency transformations are commonly used
to change the pitch of a sound without effecting its duration.

Band Scatter
Scatter random-sized frequency bands around spectrum.

Parameters:
amount- maximum scatter amount of bands in Hz

widthMin- minimum width of band
widthMaz- maximum width of band

12

Frequency Pack
Packs non-zero magnitude bins towards the low end of the spectrum.

Parameters:
none

Frequency Reverse
Reverses spectrum.

Parameters:
none

Frequency Scale/Offset
Scales and offsets spectrum frequencies. Scaling and offseting correlate
to pitch-shifting and frequency-shifting.

Parameters:
mul- amount to scale frequencies
add- amount in Hz to offset frequencies

Frequency Warp
Warps frequencies around an inflection frequency.

Parameters:
freg- frequency to warp around
warp- degree of warping where 0 is none, negative is outward and
positive is inward

3.3.3 Phase Transforms

Phase transformations are useful for accomplishing traditional time domain
effects such as flanging, chorusing, and phasing. It is also possible to accom-
plish finer scale pitch-shifting and comb filtering by scaling and offsetting the
phases.

Phase Scale/Offset
Scale and offset bin phases for a feedforward comb-filtering effect.

Parameters:
scale- amount to scale phases
offset- amount to offset phases
Phase Randomize

Randomize bin phases for chorus-like effects.

13

scale = @.5
I \ 2 scale = 2 [e—>| offset

(a) (b)

inflectionFreq

—=| |-4— minWidth | | |

~—-| maxWidth

warp > @

P V"A warp < @
— —

(c) (d)

Figure 3.6: Frequency transformations (a) scale, (b) offset, (c) band scatter,
and (d) warp.

Parameters:
amount- amount in radians to randomize phases

3.3.4 Time Transforms

The phase vocoder is unparalleled in terms of time-based transformations such
as stretching and contracting. This is mainly due to the fact that the phases of
the sinusoids can be accumulated from one frame to the next avoiding phase
interference and modulation artifacts when overlapping windows. Spectral
domain time transformations are typically used to alter the duration of sounds
without effecting their pitch.

Time Freeze
Freeze time by keeping magnitudes constant.

Parameters:
freeze- whether or not to freeze the spectrum

Time Scale/Offset
Scale and offset time. Scaling and offseting correlate to time-stretching
and time-delaying.

Parameters:
scale- amount to scale time

14

offset- amount to offset time

v T - v
D \ ~ N . .
S SO interpolation =-=~- \
A A Y
el S e - -
| | J 1 J time-scaled frames | ”
L L

—p time —>» time
() (b)

Figure 3.7: Time transformations (a) scale and (b) freeze.

| ” ” l sampled frames | ” ” ” l sampled frames

| ” | frozen frames

3.3.5 Peak Transforms

These transformations operate on a higher level feature of the spectrum called
a peak. Peaks are defined as bins whose magnitude is greater than its two
neighbors. Peak detection is a commonly used technique for extracting the
sinusoidal components from the rest of sound which is assumed to be some
flavor of noise.

Peak Low Pass
Pass only the n'* lowest frequency peaks.

Parameters:
peaks- number of peaks to pass
neighbors- how many neighboring bins to pass with peaks

Peak Pass
Pass only the n** highest magnitude peaks.

Parameters:
peaks- number of peaks to pass
neighbors- how many neighboring bins to pass with peaks

Peak Reject
Reject the n'" highest magnitude peaks.

Parameters:
peaks- number of peaks to reject

neighbors- how many neighboring bins to pass with peaks

Voices
Attempts to pass only harmonically related peaks.

15

Parameters:

voices- number of voices to pass through
tolerance- maximum harmonic deviation for valid voice

harmonics- minimum number of harmonics for valid voice
neighbors- how many neighboring bins to pass with peaks

3.3.6 Utilities

For any of the above transformations it is possible to selected a range of fre-
quencies to operate on. One example of its use is in creating simple spectral
filters by magnitude scaling selected bands of frequencies. Another useful util-
ity is a seeder for controlling random-based transformations, such as band

thinning and band scattering.

Range

Specify a certain frequency range for spectral filters.

Parameters:
low- lower bound of range in Hz
high- upper bound of range in Hz
offset- amount to offset range in Hz

<« offset

Seeded
RNG

seed = @

module

seed # 0

module

module

low high

(a)

Figure 3.8: Utility modules (a) range and (b) seed.

Seed

Plant a seed for the seeded random number generator (RNG). There are
two RNGs used for all random-based transformations- non-seeded and
seeded. The non-seeded RNG is used continuously from frame to frame
while the seeded RNG is reseeded at least once every spectral frame.
In other words, the non-seeded RNG applies extra-frame randomness to

processing flow
—b

(b)

processing while the seeded RNG applies intra-frame randomness.

Parameters:

seed- seed for the local RNG, where 0 is a bypass

16

3.4 Module-level Interaction

The module screen is divided into two areas: the palette and the graph. The
basic premise is that processing modules can be instantiated from a palette
and moved around freely in a signal processing chain. The graph view follows
the simple convention of signal flow from left to right. The graph allows two
distinct types of processing flow: serial and parallel. A serial flow passes a
transformed signal from one processor to another processor and a parallel flow
splits a signal into two or more paths that are processed independently and
summed together at some later point in time. By default, the processing flow
is serial, since this is the most commonly used. The palette view contains
selectable cells of the various types of transformations. Each row contains
transformations of a specific class- magnitude, frequency, phase, time, peak
and utility. The transformations can be placed in the processing graph by
clicking its cell and pressing the spacebar. The transformation will be placed
immediately after the last executing, or rightmost, module in the graph.

Freg\Warp
FregRew
Bizcale
Scatter
FregPack
rags0
LineCut

SombE S Range | [Magso | [Range
MzngF'as”s] zcale Z lovuy 2006, scale 1] lonwe 0
MagRef offset 0 high 4013 |offset 0 high 22050
MagCmp offset] offset n
rdagFill
Magdvy
Bandavyg
PhsS0
PhzRand
Timeso
Freeze

Figure 3.9: Screenshot of the Transfer module palette and graph editor.

Interaction with the modules on screen is done primarily with the mouse.
Clicking and dragging a module with the left mouse button moves its position
on screen. A simple cross-hair is shown at the top left corner to indicate the
actively selected module and its position relative to other modules in the sig-
nal processing chain. Clicking and dragging an empty section of the workspace
with the left mouse button moves all the modules as a group. Clicking with
the right mouse button on a module will toggle the visibility of its parame-
ter sliders. The module’s parameters can then be modified by clicking and
dragging the slider where the left button does course adjustment and the right
button does fine adjustment.

17

3.5 Visual Feedback of Auditory Signals

Having the ability to visually represent sound is an important feedback device
in any musical software. Not only does it allow one to perceive qualities of
sound that would be difficult or impossible to hear, but its mode of feedback
does not interfere with the listening of current auditory tasks. Showing the
history and high frequency content of sound becomes an almost trivial task
when done visually. Visual feedback in Transfer is presented through a scope
with four different views: waveform, spectrum, wavescan, and sonogram. The
waveform view displays an instantaneous time domain representation of the
sound while the wavescan view shows a history. The spectrum and sonogram
views are their analogues in the frequency domain.

\W\

W‘WW“MMMM:M. AT YNETH PR LR T X
(b)

Figure 3.10: Screenshots of the four separate scope modes (a) waveform, (b)
spectrum, (c) wavescan, and (d) sonogram.

The views have additional features that reveal important features of the
sound. To help see finer details of the sound information each view has the
ability to zoom in or out. In time domain views this simply controls the
scale of the time-axis, while in the frequency domain it controls the number
of frequency bins from 0 Hz that are displayed. The wavescan and sonogram
views also lay down vertical bars at quarter-second marks as they scan across
the screen from left to right.

18

Chapter 4

Transfer Implementation

Transfer was written in the C and C++ programming languages and uses
several cross-platform libraries for low-level system operations. It uses OpenGL
for its graphics rendering, PortAudio for generating audio and a custom C
library for doing spectral processing. It has been tested to run under Mac OS
X and could easily be ported to Windows since it uses all cross-platform APIs.

Table 4.1: Third-party libraries used by Transfer

’ Name ‘ Used For ‘
FFTW Fast Fourier transform
GLUT Windowing for OpenGL, keyboard /mouse handling
libsndfile Time domain sound file I/O
OpenGL Graphics rendering
PortAudio Audio I/0

Transfer’s program design is based and the Model-View-Controller (MVC)
paradigm. The first component of Transfer are the models which are responsi-
ble for how data is processed. The primary model, the PVUnit, is an abstrac-
tion for the phase vocoder which does short-time analysis and resynthesis of
time domain data and stores relevant information such as analysis parameters
and time and spectral buffers. The second model, the Module, is an object
that processes spectral data and stores information such as the transformation
name, the parameter names, the parameter values, and the parameter ranges.
The third model, the Graph, holds onto a group of Modules and controls the
flow of spectral data through them. It has methods for inserting, removing,
and moving Modules in the signal graph and a single process method that
recursively calls each Module’s process method in the proper order. Lastly
is the Palette, a collection of all the available processing modules from which
new Modules are inserted into the Graph object. The second design compo-
nent of Transfer are the views which determine how the models are displayed
graphically. At the core of each view is a rectangle with x-y position, width

19

and height, background color, and border thickness and color. The views sim-
ply store a pointer to a model and have a draw method for displaying the
data. The final element of MVC used in Transfer is the controller which is the
user’s interface to the views and/or models. The controllers map mouse and
keyboard input onto certain functions that modify the state of views which in
turn may modify their underlying models. Figure 4.1 shows a diagram of the
relationships between the models and views within Transfer.

Figure 4.1: UML diagram of Transfer’s models and views.

unsigned int hdrSizeB

float sampleRate

unsigned int sampleFormat
unsigned int numChannels
unsigned int numFrames
unsigned int windowSize
unsigned int padSize
unsigned int hopSize
unsigned int windowType
unsigned int spctFormat

ModuleView _
PaletteView
- Rect rect
GraphView float border Rect rect
Rect rect bool panelVisible int selected
int selected . | int sliderHeight Rect moduleRect
bool hasChanged L1 [intsliderGap int pad
bool drawConnections int selectedParam bool drawBorder
draw drawBox draw
resetView drawPanel select
1 setName selectAtPoint
paramOfPoint getSelectedModule
setDefaultLook 7
1
1
] Module
DSPType type
Graph char * name
int maxModules void (* dspFunc)(PVUnit *) 1
_b°°| * slotOpen int numParams Palette
int * order 1 float pValues[8] 1L
void * view float pRanges[8][2] int * numOfType
insert char * pNames[8] Sort
remove bool active
move setParam
process setParamValue
incParamValue
process
1
1
PVTransform PVUnit PVBuffer
Random rngRandom bool analysisReady
Random rngSeeded 1 shiftTimeln 1 unsigned int numSamplesin
Random * rngCurrent doFFT unsigned short spctFormat
float params[8] dolFFT unsigned int numFrames
unsigned int binLo unsigned int spctBufferSize
unsigned int binHi 1 unsigned int hopIndex
unsigned int timeTap
1 unsigned int spctTap
PVHeader unsigned int peakTap
_ float * window
long magic float * time

float * timeBuffer

float * timeOverlap

float * timeOut

FloatPair * spct

FloatPair * spctBuffer
FloatPair * spctTemp
float * phaseWrap

float * phaseUnwrap
unsigned int * peaks
unsigned int * peaksTemp

20

Chapter 5

Results

One thing that became evident during the implementation of Transfer was
that it became much easier to debug spectral algorithms due to real-time au-
dio/visual feedback and interaction. In the early stages of developing the
spectral processing library, it was difficult and time-consuming to test spectral
processing modules since the code had to be recompiled for each new test and
fancy algorithms were required to test dynamic parameter changes. It also
become more and more confusing to navigate the code when attempting to
test chains of modules. Through implementing a graphical interface, the mod-
ule testing process became much faster due to having a module graph editor
and mouse control of parameter values. Also, previously unheard bugs in the
processing algorithms became visually evident through the scope.

Another strength of Transfer was that it required very little setup time
to create signal processing graphs. Although not extremely flexible, it was
nice to be able to drag modules on the screen to determine their position in
the processing graph. Also, it was quick and easy to gain access to module
parameters through a single mouse click and have control over them with
the mouse. Many existing module based programs require the user to do
things such as write source code and/or manually connect control sliders to
parameters all in an effort to do simple, common tasks. There is a clear benefit
to the user if the most commonly done tasks are also the easiest to accomplish.

With respect to the quality of the frequency domain sound transformations
in Transfer, it was found that they had less abrasive and noticeable artifacts
than many time domain effects. Due to the fact that the phase vocoder uses
overlapping windows during resynthesis, there were no undesirable pops or
clicks introduced by the processing algorithms and by rearrangement of the
module graph. This could be advantageous for a live performance that requires
switching between different preset arrangements of modules.

21

Chapter 6

Future Work

Although a single piece of software can be extended to do a wide array of tasks,
there are several important features that could be added to Transfer to improve
its usability. An obvious one is the ability to store and recall your workspace
to disk so module interconnections do not have to be done from scratch every
time the program is restarted. Also, within the workspace it would be nice to
store and recall preset configurations of module parameters. Another feature
would be to extend the breadth of interaction to include sample-level editing
and sequence-level event scheduling for compositional purposes. An interesting
interface for a sequencer would be a table based view similar to a Csound score,
but traversable like a spreadsheet. This could be extended further to allow
encapsulating events within events and having code as events for doing more
complex flow.

\
\

Figure 6.1: Sketch of a table-oriented interface for scheduling nested events.

Musically speaking, the module-level form of interaction is generally only
useful for live performance. To extend the module-level interaction further it
would be useful to have a general purpose input device to parameter mapper.
A sketch of a possible interface is shown in Figure 6.2. The mapper is based on
a querying mechanism to navigate all the recognized input device parameters
and all the software’s mappable parameters. The range of each parameter’s
value and type of mapping curve could also be specified in a table-oriented view.
It would also be helpful to navigate mappable devices through a graphical map
view that shows all the mapping connections and parameter details of clicked
upon objects.

22

Parameter Linker

Search: [mouse Search: [sampler

[Parameter Min Max Parameter Min Max Type
0 [DIS_W sampler1/rate 0.125 4 log2
mouse/y/0 0 DIS_H sampler1/vol 0 1 log2
mouse/1/up 0 1 sampleri/noteOn 0 1 stepl
mouse/1/down 0 1 sampler1/noteOff 0 1 step1

Object Map View Object Parameter Range

sampler1

noteOn 0 1 step1

noteOff 0 1 step1

rate 0125 4 log2

vol 0 1 log2

Figure 6.2: Sketch of a parameter mapping screen.

23

Chapter 7

Conclusion

The frequency domain grants musicians the ability to work separately with
the time and frequency content of sound. Today’s computers allow us to
operate on sound in the spectral domain with real-time visual feedback and
interactive control. Unfortunately, modifying spectral data in an intuitive
manner remains a problem. Transfer is a software program that allows one to
control processes in the spectral domain through a graphical modular interface.
Complex transformations can be accomplished by chaining together processing
modules divided into six different types: magnitude, frequency, phase, peak,
time, and utility. The graphical nature of Transfer makes it easy to control
the parameters of spectral modules, see and modify the processing flow of
modules, and to visualize the sonic effects of the transformations. This real-
time interaction led to more rapid experimentation and evaluation of different
spectral processing algorithms and configurations of modules. Transfer’s model
of intuitive, interactive, graphical control shows much promise for a future
where an ever increasing amount of complex synthesis methods can be executed
in real-time.

24

Appendix A

Fourier Transform

The Fourier transform, named after French mathematician and physicist Jean
Baptiste Joseph Fourier, is a method for representing any arbitrary signal as
a sum of sinusoids with specific amplitudes and phases. The sinusoids of the
Fourier Transform are called its basis functions. There are four classes of the
Fourier Transform derived from the nature of the signal being analyzed. For
clarity, illustrations of the four signal types are shown in figure A.1.

Table A.1: Family of Fourier Transforms

| Transform \ Signal (Time) | Basis (Frequency) |
Continuous Fourier Transform | Continuous, Aperiodic | Continuous, Aperiodic
Fourier Series Continuous, Periodic Discrete, Periodic
Discrete Time Fourier Transform | Discrete, Aperiodic | Continuous, Aperiodic
Discrete Fourier Transform Discrete, Periodic Discrete, Periodic

(d) T
oy L_(L__iol_ I _al 1_?_6_?&!930__

Figure A.1: Signals that are (a) continuous and periodic, (b) continuous and
aperiodic, (c) discrete and periodic, and (d) discrete and aperiodic.
In the interest of presenting information relevant to the phase vocoder, only

the discrete Fourier transform will be discussed. Before going any further, the
following table will be presented to describe the most common symbols used.

25

Table A.2: Symbol definitions

’ Symbol \ Description \ Unit ‘
x Time domain frame -
N, Nppr | Number of samples in time-frame samples
n nt* sample in time-frame -
X Frequency domain frame various
K Number of bins in frequency-frame bins
k k' bin in frequency-frame -
R, Time domain sampling rate samples/sec
Ry DFT analysis rate samples/sec
Fy Fundamental bin frequency Hz
w(k) Angular frequency of k% bin radians/sample
f(k) Frequency of £ bin Hz
mlk] Magnitude of k£ bin -
0[k] Phase of k' bin radians
I[k] Instantaneous frequency of £ bin Hz
Nhop Number of samples between DFT's samples
Npad Number of samples of zero-padding samples
Nuyin Number of samples in window samples

A.1 Discrete Fourier Transform

The discrete Fourier transform (DFT), decomposes a discrete signal into a
harmonically related, finite set of sinusoids. It is common to refer to the time
domain signal as x and its frequency domain representation as X. N is the
number of samples in the input signal operated on by the DFT and K is the
number of frequency samples, referred to as bins, in the resulting analysis. x[n]
is the amplitude of the n'* sample in the time-signal and X [k] is the magnitude
and phase of the k' harmonic in the frequency spectrum. Equations (A.1) and
(A.2), respectively, are the mathematical descriptions for transferring to and
from the frequency and time domains.

X[k| = X_% z[n](cos(w(k)n) — jsin(w(k)n)) (A.1)
xln| =]:\L[kz__: X[k (cos(w(k)n) + jsin(w(k)n)) (A.2)

w(k) is the angular frequency of the k' bin derived from
w(k) = 2;? (A.3)

Just as time domain samples represent the amplitude of a waveform at

26

discrete points in time, frequency domain samples represent the amplitude
and phase of sinusoids at discrete points in frequency. The frequency of the
analysis bins are related to the sampling rate, R;, of the input signal and the
size of the DFT, Nppr. The fundamental frequency of the analysis, i.e. the
first non-DC bin, is computed as:

Ry

Fp= (A.4)

From this, the frequency of the & bin can be calculated.

F(k) = kF; (A5)

Equation (A.4) is simple, yet profound in that it shows that the fundamen-
tal frequency of the Fourier analysis is inversely proportional to the number
of time samples being analyzed. In other words, there is a trade off between
time resolution and frequency resolution. This makes sense since the period of
a waveform is inversely proportional to its frequency. Due to the mechanics of
the DFT, the lowest frequency sinusoid that can be detected in a signal is one
with a period of V.

A.2 Data Representations

A.2.1 Samples

Before diving into specific representations for spectral data it is useful to com-
pare the format of samples in both the time and frequency domains. In the
time domain, samples are usually represented as a contiguous 1-D array of
amplitude values. The independent variable time, is specified as a value in
seconds between samples. In the frequency domain, samples are represented
as a 2 x M matrix of sinusoidal data. A single frequency sample, or bin, re-
quires two data points to fully describe a sinusoid. The independent variable
frequency, is specified as a value in Hz between bins.

Tirme (n) Fraguenay (k]

|

*= React Paolar Frag

and [0 7 2[5 [+ [5]) [") R EEE alk] mik] mik]
K1

i blk] &kl k]

(a) =3}
Figure A.2: Samples in the (a) time domain and (b) frequency domain.

For real to complex DFT's, the relationship between number of time domain
samples, N, and frequency domain samples, K, is as follows:

N

27

Looking at (A.6), it may seem like we have created information since we
went from N values in the time domain to N + 2 values in the frequency
domain. This is truely not the case and lies with the fact that the components
X[0] and X[K — 1], the DC and Nyquist bins, have no phase information.

Opc = 06[0] =0 (A7)
9Nyquist = ‘9[K - 1] =0 (A~8)

Frequency domain samples have several formats for how sinusoidal data is
stored in the bins. There is no one format that is best in all situations, there-
fore multiple representations are usually used simultaneously when processing
spectral data.

A.2.2 Rectangular Form

The result of doing a DFT on an array of N real value samples, x, is an array
of K complex value pairs, (alk],b[k]), where

X[k] = alk] cos(w(k)n) + b[k] sin(w(k)n). (A.9)

The complex value pairs are the coordinates of a phasor on the complex
plane.

imag
in
2_ —
/,f" 0.1} "“«\\
/ \

S . _{ﬂ-b] ™,
/ ' A
! &0 \
| N ; |
] 8. oo real

(-l -1m [
II II
l"\‘ r
\. /
S 1)
Nan

Figure A.3: The complex plane and unit circle.

Rectangular form is generally used for multiplying spectra together to do
convolution in the time domain.

A.2.3 Polar Form

A more intuitive data representation for frequency samples is to specify them
as the magnitude and phase of a sinusoid. X[k] can be represented in polar
form as

X[k] = m[k] sin(w(k)n + [k]) (A.10)

by converting it from its rectangular form (A.9) using:

28

mlk] = \/alk]? + b[k]? (A.11)

[k] = tan™! b[[ll:‘]] (A.12)

To do the inverse DFT, the frequency samples must be put back in rectan-
gular form using:

alk] = m[k] cos(0[k]) (A.13)

b[k] = m[k] sin(0[k]) (A.14)

Polar form is most useful for frequency analyzers, spectral feature extrac-
tion, and as an intermediary format for converting to magnitude/frequency
form.

A.2.4 Magnitude/Frequency Form

Besides having the magnitude and phase of a sinusoid in a bin, it is informative
to have an estimate of the sinusoid’s true frequency. Remember that frequency
samples are quantized, so partials that don’t lie on integer multiples of F} will
have energy spread across multiple bins. Fortunately, we can make a good guess
of a partial’s actual frequency by using phase information. The frequencies in
this form are called instantaneous frequencies and they are obtained by taking
the time derivative of phase values between successive analysis frames. The
instantaneous frequency of the £** bin is

Ry
I[k] = 2thopwrap{"’i”’i}(9/[k] — kb)) + kFY (A.15)
where @'[k] is the time derivative of the k' bin’s phase between analysis
frames and 6 is the number of radians we expect to go by each Nj,, samples
for a sinusoid at the fundamental analysis frequency, Fy. 0y, the fundamental
radian increment, is defined as:

27TNhop
N

Converting back to polar form is done simply by solving equation (A.15) for
0'[k] and accumulating the phase difference.

0 = (A.16)

o 277Nhop
= Rt

Equation (A.17) can be greatly simplified by substituting in equations (A.4)
and (A.16) for F and 6y, respectively.

0'[k] (I[K] — kEFy) + ko, (A.17)

27TN}wp
N

. 27TNh0p
= R,

B

0'k] N

(I[k] —k—)+k

29

27w Ny, 27 Ny, 27w Ny,
O[k] = “hon [k — ko =T ko
= e k] = KT 4 2
27 Nio
0'[k] = WR:”’[[k] (A.18)

Magnitude/frequency form is used for pitch- and time-scaling, oscillator
bank resynthesis, and as a starting point for more advanced analysis techniques
such as peak detection and continuation.

30

Appendix B

STFT Analysis Parameters

In general, there are four analysis parameters that need to be specified before
analysis can take place. These are the sizes (in samples) of the window, zero-
padding, and analysis hop, and the type of window. Many other combinations
of these parameters can be derived and used as specifications depending on
taste. Some of the more popular ones are DFT size (window size plus zero-
padding size), analysis rate (sample rate divided by hop size), and overlap
factor (window size divided by hop size). Some window types may also have
one or more additional parameters to specify their shape.

Amplitude
A
11
Window'.-‘.
0 =y Time
—»| Hop Size |«
|- FFT Size >

|«<—— Window Size —|e—— Padding Size —|

Figure B.1: Analysis parameters

The choice of analysis parameters will have a large impact on the nature of
the analysis data, including frequency resolution, amount of data, and smearing
artifacts. The amount of each analysis parameter will have a direct or inverse
relationship with certain qualities of the spectral data.

The choice of window shape will have a large impact on the type of smearing
of the frequency samples. Technically speaking, this smearing is convolution
in the frequency domain of the spectra of the window and samples since they
are being multiplied in the time domain.

31

Table B.1: Analysis Parameters

’ Parameter \ Frequency Resolution \ Time Resolution \ Typical Ranges ‘

Nyin direct inverse [512, 4096]
Npad direct - [0, 3Nwm]
Niop - inverse [Nuwin/2, Nuwin/8]
Table B.2: Characteristics of various window types
Type Main-Lobe Width (-3dB) | First Side-Lobe Height Roll-off
(bins) (dB) (dB/octave)
Rectangle 0.89 -13 -6
Triangle 1.28 =27 -12
Hann 1.20 -31 -18
Hamming 1.30 -43 -6
Blackmann 1.68 -58 -18
Kaiser variable variable -6

Ideally, we want a window that gives a narrow main lobe width, low first
side lobe height, and high roll-off factor to minimize the amount of smearing
artifacts. Unfortunately, in reality increasing the desirability of one trait tends
to make the others worse. The most popular choices of windows are the Hann
and Hamming since they offer a good balance between all the characteristics.
Another popular window choice is the Kaiser window because it can be mod-
ified to give different trade-offs depending on the nature of the signal being

analyzed.

32

Bibliography

[1] De Goetzen, A., Bernardini, N., and Arfib, D. “Traditional (?) implemen-
tations of a phase-vocoder: The tricks of the trade.” Proceedings of the
COST G-6 Conference on Digital Audio Effects (DAFx-00). Verona, Italy.
7-43.

[2] Dobson, R. 1993. “The operation of the phase vocoder: A non-
mathematical introduction to the fast Fourier transform.” Composer’s Desk-
top Project. http://www.bath.ac.uk/ masjpf/CDP /operpvoc.htm

[3] Dolson, M. 1986. “The phase vocoder: a tutorial.” Computer Music Jour-
nal. 10(4):14-27.

[4] Flanagan, J. L. and Golden, R. M. 1966. “Phase vocoder.” Bell System
Technical Journal. 1493-1509.

[5] Harris, F. 1978. "On the use of windows for harmonic analysis with the
discrete Fourier transform.” Proceedings of the IEEE. 66(1):51-83.

[6] Laroche, J. and M. Dolson. 1997. “Phase-vocoder: About this phasiness
business.” Proceedings of the International Computer Music Conference.

[7] Laroche, J. and M. Dolson. 1999. “New phase-vocoder techniques for pitch-
shifting, harmonizing and other exotic effects.” Proceedings of 1999 IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics. New
Paltz, NY.

[8] Manolescu, D. 1997. “A data flow pattern language.” Proceedings of the
4th Pattern Languages of Programming, Monticello, Illinois.

[9] McCartney, J. 2002. “Rethinking the Computer Music Language: Super-
Collider.” Computer Music Journal. 26(4): 61-68.

[10] Moore, F.R. 1990. Elements of Computer Music. Englewood Cliffs: Pren-
tice Hall.

[11] Moorer, J.A. 1978. “The use of the phase vocoder in computer music
applications.” Journal of Audio Engineering Society. 27(3): 134-140.

[12] Nutall, A. H. 1981. ”Some windows with very good sidelobe behavior.”
IEEE Transactions on Acoustics, Speech and Signal Processing. ASSP-
29(1):84-91.

33

[13] Portnoff, M.R. 1976. “Implementation of the digital phase vocoder using
the fast Fourier transform.” IEEE Transactions on Acoustics, Speech and
Signal Processing. ASSP-24(3):243-248.

[14] Puckette, M. 2002. “Max at seventeen.” Computer Music Journal. 26(4):
31-43.

[15] Roads, C. 2001. Microsound. Massachusetts Institute of Technology.

[16] Serra, M.-H. 1997. “Introducing the phase vocoder.” In Musical Signal
Processing, ed. Curtis Roads et al, 31-90. Lisse: Swets & Zeitlinger.

[17] Wishart, T. 1994. Audible Design. Orpheus the Pantomime Ltd.

[18] Wishart, T. “Computer Sound Transformation.”
http://www.trevorwishart.co.uk/transformation.html (Accessed November,
2005).

34

