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ABSTRACT
We present the Device Server, a framework and applica-
tion driving interaction in the AlloSphere virtual reality
environment. The motivation and development of the De-
vice Server stems from the practical concerns of managing
multi-user interactivity with a variety of physical devices
for disparate performance and virtual reality environments
housed in the same physical location.

The interface of the Device Server allows users to see
how devices are assigned to application functionalities, al-
ter these assignments and save them into configuration files
for later use. Configurations defining how applications use
devices can be changed on the fly without recompiling or
relaunching applications. Multiple applications can be con-
nected to the Device Server concurrently.

The Device Server provides several conveniences for per-
formance environments. It can process control data ef-
ficiently using Just-In-Time compiled Lua expressions; in
doing so it frees processing cycles on audio and video ren-
dering computers. All control signals entering the Device
Server can be recorded, saved, and played back allowing
performances based on control data to be recreated in their
entirety. The Device Server attempts to homogenize the ap-
pearance of different control signals to applications so that
users can assign any interface element they choose to appli-
cation functionalities and easily experiment with different
control configurations.
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1. INTRODUCTION

1.1 Motivations
The Device Server provides tools and methodologies for

manipulating control data dynamically and flexibly. It cur-
rently drives interactivity inside the UCSB AlloSphere, a
three-story, spherical, immersive environment dedicated to
artistic performance and scientific research [2]. Applications
deployed in the AlloSphere range from algorithmic music
and visualization engines to simulations of sub-atomic elec-
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tron spin in hydrogen atoms. The Device Server’s design
stems from the practical concerns of managing interactivity
in this wide variety of virtual environments; we believe it
has reached a level of maturity and generality where it may
be broadly useful in the NIME community.

The initial design for the Device Server addressed the
following primary concerns:

• A physical space the size of the AlloSphere (approxi-
mately 715 m3) requires multiple computers to drive
active stereo visualizations and spatialized sonifica-
tions. A centralized hub for interactivity can dis-
tribute control data to these computers concurrently.

• Enable users to easily customize how they interact
with applications.

• Free application developers from worrying about de-
vice drivers or any other implementation details of
interactive devices, allowing them to focus on expos-
ing interactive functionality within their applications.
Instead of hard-coding any device-specific knowledge
into applications, make all applications device-agnostic
and relate device affordances to application function-
ality with an explicit mapping layer[10].

• Visual and sonic rendering machines should not be re-
sponsible for processing control data. Let the Device
Server efficiently handle common control data process-
ing tasks such as filtering and thresholding.

• Initializing visualization and sonification engines when
switching from one virtual environment to another can
be a complex task. A typical AlloSphere demonstra-
tion involves experiencing five or six virtual environ-
ments on different hardware and software platforms
in half an hour; moving between these environments
must be as smooth as possible and avoid delays and
technical glitches. Use of the Device Server should au-
tomate changing interactive configurations so that no
human intervention is required.

• Provide a centralized console for monitoring all control
data and troubleshooting all connections.

1.2 Terminology
A Device is a piece of hardware or software that provides

interactive affordances. A Device is often an aggregation of
Controls. Example devices include Wiimotes, MIDI Key-
boards and camera tracking systems.

A Control is a single interactive element that is part of a
Device. For example, a joystick on a gamepad Device has
one Control for the X direction and a second Control for
the Y direction.

A Mapping links an application functionality to a partic-
ular Control on a particular Device, with an optional Lua



programming language expression that is evaluated when-
ever data is received from the Control assigned to the Map-
ping.

1.3 Related Work
Frameworks for interactivity can generally be divided into

those geared towards use in Virtual Reality Environments
(VREs) and those geared towards use in artistic expression.
The Device Server is the first framework for interactivity
explicitly designed for both uses; brief descriptions of other
frameworks from both fields are provided below.1

1.3.1 Virtual Reality Interactive Frameworks
The VR community has a longer history of creating soft-

ware infrastructures for managing interactivity than that
of the digital arts community. Although many interactive
frameworks such as Vrui[4] and Gadgeteer[1] are part of
larger VR development environments the most pervasive
VR interactivity framework, the Virtual Reality Peripheral
Network (VRPN)[8] is a standalone interaction library that
has been in development and usage for over a decade.

In addition to handling device drivers and networked com-
munication, VRPN and other VR frameworks commonly
feature abstractions that allow one device to be easily swapped
with another. In VRPN this is enabled through the use
of device categories: Tracker, Button, Analog, Dial and
ForceDevice; the Vrui and Gadgeteer frameworks use a sim-
ilar set of categories. Any tracker device can be substituted
with any other tracker; any button with any other button
etc. However, these abstractions require client application
functionality to be built around them. An application pro-
grammed to use a joystick for navigation cannot use a track-
ing device instead without changing and recompiling appli-
cation source code. This is in direct contrast to abstractions
found in the Device Server which decouple application func-
tionality from device-specific constraints.

1.3.2 Interactive Frameworks for Musical and Artis-
tic Expression

Perhaps the most significant difference between VR in-
teractivity frameworks and those intended for artistic con-
texts is the use of GUIs. None of the the VR frameworks
mentioned has a GUI to monitor server state or device con-
nections; in contrast, many tools geared towards musical
expression prominently feature user interfaces.

In addition to monitoring state and connections, the GUI
for the Mapping Tools of the McGill Digital Orchestra Tool-
box (DOT)[5] also enables users to configure and reconfigure
how devices control applications. These configurations can
be saved into XML documents and reloaded on demand.
Unfortunately, in the current DOT externals for Max/MSP
these configurations have to be loaded by hand; in the De-
vice Server default configurations for client applications are
loaded automatically so that no human interaction is re-
quired.

Other recent frameworks such as the SenseWorld DataNet-
work[3] and The Bridge[6] emphasize dynamic registration
of participants and devices in a musical network. The Bridge
also features a decentralized network similar to what is
found in VRPN; there is no central location for monitor-
ing and manipulating control data flow. The ability to dis-
cover and utilize nodes on a network adds flexibility and
dynamism, however, the current lack of recallable configu-
rations in these two frameworks makes them less than ideal
for VREs in which multiple distinct projects are frequently
run.

1For a more thorough discussion please see
http://www.charlie-roberts.com/docs/thesis.pdf
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Figure 1: A Sample Device Server Network

2. THE DEVICE SERVER

2.1 Overview
The Device Server application runs under OS X. It col-

lects data from connected interactive devices and routes
them to registered client applications. All network commu-
nication is performed using the Open Sound Control pro-
tocol [9]; the ability to send and receive OSC messages is
the only requirement for client applications to communicate
with the server. OSC was chosen as the communication pro-
tocol for both its flexibility and its wide rate of adoption into
programming platforms used in the digital arts.

Each configuration defines the mappings from devices’
controls to application functionality, including arbitrary con-
trol data processing (described in Section 2.7), with both
mappings and processing algorithms represented using the
Lua programming language. Lua was chosen for its speed,
dynamism, ability to perform arbitrary computation, and
roots as a configuration language; more about the decision
to use Lua can be read in sections 2.3 and 2.7 .

Programmers can therefore define entire configurations at
the Lua source code level. Alternately, the Device Server’s
GUI allows easy loading, saving, and modification of con-
figurations, automatically translating GUI-defined configu-
rations into the appropriate Lua code. Client applications
can also define configurations programmatically by indicat-
ing (via OSC messages) which devices they are interested
in and how they want device output to be processed before
it is sent to them.

The Device Server GUI (described in Section 2.4) also
allows users to monitor device connections and the data
entering and leaving the Device Server.

2.2 Device Server Network Topology
The Device Server runs on a single computer in an inter-

active network; Figure 1 shows a simple sample network.
Client applications typically running on different comput-
ers within the network register with the server by sending a
handshake message that gives the name of the application
and the port and IP address where the client would like to
receive control messages. Multiple client applications can
be connected to the Device Server concurrently; each client
possesses its own configuration files defining which devices



they will receive data from. These configurations can also
define separate Lua functions for processing this data be-
fore it is sent to client. Multiple clients can thus receive
data generated by the same controls on the same devices
but filtered using different algorithms.

Devices can be connected to the Device Server through
many different mechanisms. Direct connections via cabling,
network messages sent via OSC and network messages sent
via VRPN are all supported. Other types of connections can
be accommodated through the use of plugins (discussed in
Section 2.5.1).

2.3 Configuration
There are four types of configurations utilized by the De-

vice Server and specified in Lua files. Alternatively, the Ap-
plication Interface and Implementation configurations can
be specified dynamically using OSC messages at runtime.

• Master Device List - A global configuration that as-
signs a unique id to every device in an interactive sys-
tem.

• Device Configuration - enumerates the Controls present
on a Device and the range of values each one gener-
ates.

• Application Interface - Each client application has a
single Interface that defines what functionalities the
application is exposing for control, what range of val-
ues each functionality expects to utilize, and the OSC
address for each functionality.

• Application Implementations (aka Configurations) -
Client applications can have multiple configurations
that each address the application’s Interface. The
implementation file defines which specific controls on
which specific devices are assigned to each applica-
tion functionality, along with the Lua expressions and
functions for processing control data.

As mentioned above, client applications have a single in-
terface file defining the functionalities they expose and any
number of implementation files defining different configu-
rations of devices that feed control data to these function-
alities. When an implementation file is loaded the Device
Server creates mappings that define which controls on which
devices feed into particular functionalities and what pro-
cessing scripts are applied to the data generated by the
controls. Applications can define implementations that in-
clude wired devices instead of wireless ones, multiple users
instead of a single one, MIDI devices instead of Wiimotes
or any other combination of controls. Users can quickly
change entire interactive configurations simply by choosing
another implementation through a pull-down menu in the
Device Server GUI.

A very small example interface is given below for a client
application that provides the affordance of moving an avatar
on a two dimensional plane.

interface = {

{ name = "Avatar X", destination = "/nav/a1x",

min = -1, max = 1 },

{ name = "Avatar Y", destination = "/nav/a1y",

min = -1, max = 1 },

}

In the above interface file two functionalities, Avatar X
and Avatar Y are defined. The application is expecting to
receive values ranging from -1 to 1 for both. The OSC ad-
dress where these values should be received is also given.

This information represents constants that are always the
same regardless of what implementation file is currently
loaded.

Below is an example implementation for the the interface:

mappings = {

{ name = "Avatar X", device = "Wiimote 1",

control = "Nunchuk X", expression = ""},

{ name = "Avatar Y", device = "Wiimote 1",

control = "Nunchuk Y", expression = ""},

}

For each functionality defined in the interface (in this case
Avatar X and Avatar Y) a mapping is defined that denotes
the name of a control on a particular device whose values
should be sent to the corresponding OSC address in the in-
terface. This is also where Lua expressions can be defined;
these will be evaluated whenever data from the correspond-
ing control is received by the Device Server. This expression
can call on predefined Lua functions and enables powerful
data processing capabilities. The Device Server originally
used XML as its configuration language and JavaScript for
control data processing. We decided to move to Lua be-
cause it could fulfill both roles; in addition to being one of
the fastest scripting languages available Lua was originally
intended as a data description language. One of the unan-
ticipated advantages to using Lua as the configuration lan-
guage is that configurations can be dynamically generated.
As one simple example, the for loop below would generate
a configuration dictionary that would allow an application
to access a device with 128 buttons.

controls = {}

for i=1, 128 do

controls[i] = {

name = "Button Grid" .. i,

device = "ButtonDevice",

control = "Button " .. i,

}

end

Another advantage of using Lua is that the device and
control names can be assigned to Lua variables making it
very easy to change one device for another throughout an
entire implementation.

2.4 Graphical User Interface
The GUI of the Device Server, shown in Figure 2, is one of

the elements that sets it apart from other VR frameworks
as well as other tools for musical interactivity. It allows
users to do the following:

• Quickly see what client applications are connected and
what controls are assigned to each application func-
tionality

• Select the current client implementation file defining
control mappings

• Change the devices and controls assigned to applica-
tion functionalities via pulldown menus. Changes to
control configurations can be saved into new imple-
mentation files for future recall.

• Monitor data flow. Users can see the raw data values
generated by the devices and also see processed values
that are routed to applications.

• Monitor and manage device connections. The Device
Server plugin system allows each device to have its



Figure 2: A screenshot of the Device Server GUI showing one client application connected to a variety of
devices.

own encapsulated GUI for managing device connec-
tions. This is necessary for devices requiring Blue-
tooth pairing or other action sequences to establish
connections.

2.5 Integrating Devices With the Device Server
To add a new Device that uses a driver or protocol the

Device Server already has a plug-in for (such as HID, VRPN
and MIDI) users create a Lua configuration file that enu-
merates the device’s controls and gives the range of values
each control outputs. The Device Server can be extended
to support additional devices and protocols via OSC for-
warding or via its plug-in architecture.

OSC forwarding of device data allows devices that are
connected to other computers to be recognized by the De-
vice Server. For example, the AlloSphere possesses a camera
tracking system that gives the orientation and position of
active infrared LED markers. The cameras are connected
to their own dedicated computer which performs the com-
puter vision processing needed to generate these values.
This computer forwards these values to the Device Server
which then routes them as required to registered applica-
tions. OSC forwarding also allows software applications
such as Max/MSP to generate control data to be used by
the Device Server. Thus, if Max has a driver for a device
that the Device Server doesn’t possess Max can be used to
forward messages from that device to the Device Server. As
one example of this the AlloSphere has a bridge mounted
in its horizontal and vertical center lined with capacitive
touch sensors. These sensors are mounted on the railings
of the bridge and use a Max/MSP external to analyze their
signals and forward data to the Device Server via OSC. Ap-
plications configured to receive this data can thus tell when
users are touching the railings and also obtain a rough idea
of user positioning on the bridge.

If a plugin has not been written for a device and there
is no opportunity to feed the device data into the Device
Server via OSC, a plugin can be written.

2.5.1 Device Server Plugins
The Device Server manages many types of device connec-

tions (MIDI, HID, VRPN) via dynamically loaded plugins
which can display optional GUIs. The plugin system is
designed to be open-ended and flexible; there are a wide
variety of plugins currently available for the Device Server
ranging in complexity from simple HID wrappers to an au-
dio FFT analysis plugin that visualizes the bin magnitudes
of incoming audio and allows applications to use this data
as control sources. The infrastructure and GUI that allows
the Device Server to record and play back performances is
also completely encapsulated inside of a plugin.

Although the Device Server comes with many plugins
they are all compiled optionally so that users don’t have to
load plugins they don’t need. An Xcode template project
is included for developers to write their own Device Server
plugins. The template compiles and runs immediately with-
out modification in the Device Server; by default it gener-
ates a stream of placeholder data that can be easily altered
by developers to use data from C or C++ device-specific
drivers.

2.6 Homogenization of Device Signals
A fundamental goal of the Device Server is for application

functionalities to be agnostic to the devices that control
them[10]. The implementor of an oscillator should not care
whether the oscillator’s pitch will be controlled by a MIDI
keyboard or a joystick. However, the values generated by
a MIDI keyboard (0-127) are different than those of most
joysticks (-1.0 to 1.0 or -127 to 127). The solution is for the
application to define its own units for each functionality,
e.g., Hertz or MIDI note number, and leave it to the Device
Server to homogenize the data from differing devices by
automatically remapping them to the declared ranges of
the application functionalities.

To do this the Device Server finds the application’s de-
clared range of input values for each functionality (from the



Figure 3: A Screenshot Of The Hydrogen Atom Application

interface file), compares it to the corresponding control’s
declared range of output values (from the device configu-
ration file, and automatically creates an affine mapping to
scale and offset values appropriately. This transformation
makes it very simple to change the device/control combi-
nation feeding a functionality as the application will always
receive the same range of values.

2.7 Control Data Processing With Lua
The Device Server processes control data via Lua expres-

sions. Every mapping object may have a Lua expression as-
signed to it; whenever the control assigned to the mapping
emits data the data is passed into the expression and the
expression is then evaluated. Lua expressions may call on
predefined functions to carry out common processing tasks
such as integration and thresholding; these functions can
be reused across multiple applications. The functions are
Just-In-Time (JIT) compiled using LuaJIT 2.0[7]. LuaJIT
2.0 compilation yields performance that can be comparable
to Java and C in various benchmarks. 2 3

A great deal of data is accessible in the scripting environ-
ment. Again, Lua scripts are triggered whenever a control
assigned to a mapping generates data. But a script trig-
gered by a mapping also has access to data values previously
passed to other mappings; an expression being evaluated
can even access the previous values of mappings from other
client applications. This is useful in many situations; one
example is when two controls manipulate the same value
at different granularities such as coarse and fine pitch con-
trols. Whenever the control assigned to fine pitch is manip-
ulated a pitch value should be sent to the client application,
but in order for that pitch value to be generated both the
coarse value and the fine value need to be added together.
The scripting environment is flexible enough to handle these
types of situations.

2http://shootout.alioth.debian.org/
3http://dada.perl.it/shootout/

2.8 Recording And Playback Of Control Data
The Device Server allows users to record control data

from performances and interactive sessions. Each control
event is stored in a simple dictionary that holds an offset
time from when the recording began, device and control
identification numbers and the value generated by the event.
The event sequence can be saved into a Lua file which can
then be edited or loaded and played back in the future.

Performers routinely adjust their gestures to accommo-
date fixed gestural mappings to sound synthesis parame-
ters. The ability to record and playback gestures makes
the opposite practice possible: sound designers can adjust
mappings and synthesis parameters to accommodate fixed
gestures. Performance gestures that have been recorded can
be played back repeatedly while sound designers reconfigure
synthesis parameters to yield interesting sonic results. The
ability to record and play back timestamped control data is
also useful to researchers conducting HCI experiments.

These recording and playback features are implemented
within a Device Server plugin, demonstrating that the plu-
gin system is useful for purposes other than device drivers.

3. THE DEVICE SERVER AND INTERAC-
TIVITY IN THE ALLOSPHERE

There are a wide variety of interactive applications de-
ployed in the AlloSphere and all receive their control data
from the Device Server. These applications include musi-
cal works, data visualizations and scientific simulations but
many applications in the AlloSphere blur these lines.

The following research project within the AlloSphere shows
the possibilities of interactive data mining with different
user and device configurations as enabled by the Device
Server.

3.1 Multimodal Representation of Quantum
Mechanics: The Hydrogen Atom

This work, shown in Figure 3, interactively visualizes and



sonifies the wavefunction of an electron of a single hydro-
gen atom. The atomic orbitals are modeled as solutions to
the time-dependent Schrödinger equation with a spherically
symmetric potential given by Coulomb’s law of electrostatic
force. Different orbitals of the electron can be combined in
superposition to observe dynamic behaviors such as photon
emission and absorption.

The interactive component of the simulation allows one or
more users to fly through the atom with probes that emits
“stream particles” that follow along the largest changes in
the probability current and gradient of the electron. The
electron probability amplitude is sonified by scanning through
groups of stream particles in the space. The pitch can be
adjusted by the rate at which a particular set of stream par-
ticles is scanned. By assigning specific pitches to different
features of the wavefunction we can generate musical results
in the sonification.

The Device Server enables this simulation to be run with
a variety of different user configurations and devices. The
default configuration is for a single user using a wireless joy-
stick to control both navigation and the emission of stream
particles. The most common multi-user scenario is for one
user to navigate through the simulation while two other
users control the position of the probes and their stream
particle emission.

Users can experiment with different sets of controls for
navigation and data mining. More experienced computer
users might prefer to navigate through the environment
using a 6DOF 3Dconnexion Space Navigator while novice
users use a gamepad. In the hundreds of demos we have
given we have observed that wireless device communication
will sometimes inexplicably fail; for this reason we also have
a “all wired” configuration to fall back on in the event that
we experience difficulties with the wireless devices. Switch-
ing to this fallback configuration is accomplished through a
single pulldown menu in the Device Server GUI.

While developing and exploring the hydrogen atom repre-
sentation, the Device Server helped when transitioning be-
tween a single-user desktop environment, where more pre-
cise control with a keyboard and mouse is often required
for development, and a multi-user immersive environment,
where more natural control with wireless tracking devices
and game controls is desired for exploration. The separa-
tion of physical control from application logic according to
the Device Server model enforces a “write-once, control any-
where” approach to application development that facilitates
transitions between differing working contexts.

Key faculty and graduate student researchers associated
with the Hydrogen Atom project: Professor JoAnn Kuchera-
Morin, Professor Luca Peliti and Lance Putnam.

4. CONCLUSIONS AND FUTURE WORK
The Device Server provides abstractions and functionali-

ties that have significantly eased the challenges of designing
interactive applications for use in the AlloSphere. It allows
interactive configurations to be easily defined and modi-
fied by both novice users and developers. It removes the
burden of handling device drivers from application devel-
opers and allows them to offload control data processing
away from rendering machines. The Device Server has also
been used in performances and research outside the Allo-
Sphere; we hope that it will be adopted by the greater media
arts community and as such have released it as open-source
software under the MIT license. It can be downloaded at
http://www.allosphere.ucsb.edu/software.php.

Future work includes removing the unnecessary abstrac-
tion between devices and applications; both should be thought

of simply as a collection of inputs and outputs. We would
like to provide an option to use VRPN as the communi-
cation protocol in place of OSC as it is more familiar to
VR researchers and computer scientists. We are interested
in the possibility of a Device Server library that could be
included in applications. This library would allow Lua con-
figuration and scripting of control signals but would not re-
quire a server or network connection; device drivers would
be included in the library as plugins. Finally, we would
like to explore the possibilities of making the network more
dynamically configurable akin to what is found in the previ-
ously mentioned SenseWorld DataNetwork and the Bridge
projects.
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